By using accurate density functional theory calculations, we have studied the cluster complexes of a La(3+) ion interacting with a small number of dimethyl sulfoxide (DMSO) molecules of growing size (from 1 to 12). Extended structural, energetic, and electronic structure analyses have been performed to provide a complete picture of the physical properties that are the basis of the interaction of La(III) with DMSO. Recent experimental data in the solid and liquid phase have suggested a coordination number of 8 DMSO molecules with a square antiprism geometry arranged similarly in the liquid and crystalline phases. By using a cluster approach on the La(3+)(DMSO)n gas phase isolated structures, we have found that the 8-fold geometry, albeit less regular than in the crystal, is probably the most stable cluster. Furthermore, we provide new evidence of a 9-fold complexation geometric arrangement that is competitive (at least energetically) with the 8-fold one and that might suggest the existence of transient structures with higher coordination numbers in the liquid phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp507312y | DOI Listing |
Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.
View Article and Find Full Text PDFAmino acid insertions and deletions (indels) are among the most common protein mutations and necessitate changes to a protein's backbone geometry. Examining how indels affect protein folding stability (and especially how indels can increase stability) can help reveal the role of backbone energetics on stability and introduce new protein engineering strategies. Tsuboyama et al.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), Sagar, India.
We report a direct application of the molecular tailoring approach-based (MTA-based) method to calculate the individual hydrogen bond (HB) energy in molecular crystal. For this purpose, molecular crystals of nitromalonamide (NMA) and salicylic acid (SA) were taken as test cases. Notably, doing a correlated computation using a large molecular crystal structure is difficult.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!