Absolute and trend accuracy of a new regional oximeter in healthy volunteers during controlled hypoxia.

Anesth Analg

From the *Department of Anesthesiology, University of Arizona Medical Center, Tucson, Arizona; and †Masimo Corporation, Irvine, California.

Published: December 2014

Background: Traditional patient monitoring may not detect cerebral tissue hypoxia, and typical interventions may not improve tissue oxygenation. Therefore, monitoring cerebral tissue oxygen status with regional oximetry is being increasingly used by anesthesiologists and perfusionists during surgery. In this study, we evaluated absolute and trend accuracy of a new regional oximetry technology in healthy volunteers.

Methods: A near-infrared spectroscopy sensor connected to a regional oximetry system (O3™, Masimo, Irvine, CA) was placed on the subject's forehead, to provide continuous measurement of regional oxygen saturation (rSO2). Reference blood samples were taken from the radial artery and internal jugular bulb vein, at baseline and after a series of increasingly hypoxic states induced by altering the inspired oxygen concentration while maintaining normocapnic arterial carbon dioxide pressure (PaCO2). Absolute and trend accuracy of the regional oximetry system was determined by comparing rSO2 against reference cerebral oxygen saturation (SavO2), that is calculated by combining arterial and venous saturations of oxygen in the blood samples.

Results: Twenty-seven subjects were enrolled. Bias (test method mean error), standard deviation of error, standard error of the mean, and root mean square accuracy (ARMS) of rSO2 compared to SavO2 were 0.4%, 4.0%, 0.3%, and 4.0%, respectively. The limits of agreement were 8.4% (95% confidence interval, 7.6%-9.3%) to -7.6% (95% confidence interval, -8.4% to -6.7%). Trend accuracy analysis yielded a relative mean error of 0%, with a standard deviation of 2.1%, a standard error of 0.1%, and an ARMS of 2.1%. Multiple regression analysis showed that age and skin color did not affect the bias (all P > 0.1).

Conclusions: Masimo O3 regional oximetry provided absolute root-mean-squared error of 4% and relative root-mean-squared error of 2.1% in healthy volunteers undergoing controlled hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342321PMC
http://dx.doi.org/10.1213/ANE.0000000000000474DOI Listing

Publication Analysis

Top Keywords

regional oximetry
20
trend accuracy
16
absolute trend
12
accuracy regional
12
error standard
12
healthy volunteers
8
controlled hypoxia
8
cerebral tissue
8
oximetry system
8
oxygen saturation
8

Similar Publications

Background: Awake prone positioning (APP) can reportedly reduce the need for intubation and help improve prognosis of patients with acute hypoxemic respiratory failure (AHRF) infected with COVID-19. However, its physiological mechanism remains unclear. In this study, we evaluated the effect of APP on lung ventilation in patients with moderate-to-severe AHRF to better understand the effects on ventilation distribution and to prevent intubation in non-intubated patients.

View Article and Find Full Text PDF

Background: COPD ranks as the third leading global cause of mortality. Despite the widespread use of the BODE index and its variants for mortality prediction, their accuracy may be affected by factors like ethnicity, altitude and regional disparities. This study aimed to assess a new altitude-adapted prognostic index in COPD patients at moderate altitudes compared with the BODE and other mortality predictors.

View Article and Find Full Text PDF

Background: This study evaluates retinal oxygen saturation and vessel density within the macula and correlates these measures in controls and subjects with type 2 diabetes (DM) with (DMR) and without (DMnR) retinopathy. Changes in retinal oxygen saturation have not been evaluated regionally in diabetic patients.

Methods: Data from seventy subjects (28 controls, 26 DMnR, and 16 DMR were analyzed.

View Article and Find Full Text PDF

Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.

View Article and Find Full Text PDF

Introduction: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disease and screening to detect pulmonary arteriovenous malformations (PAVMs) is important to prevent complications. In adults, transthoracic contrast echocardiogram (TTCE) is used to screen PAVMs. In children, a conservative screening method seems to be sufficient to rule out major PAVMs and prevent them from PAVM-related complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!