Modern network security rests on the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. Distributed systems, mobile and desktop applications, embedded devices, and all of secure Web rely on SSL/TLS for protection against network attacks. This protection critically depends on whether SSL/TLS clients correctly validate X.509 certificates presented by servers during the SSL/TLS handshake protocol. We design, implement, and apply the first methodology for large-scale testing of certificate validation logic in SSL/TLS implementations. Our first ingredient is "frankencerts," synthetic certificates that are randomly mutated from parts of real certificates and thus include unusual combinations of extensions and constraints. Our second ingredient is differential testing: if one SSL/TLS implementation accepts a certificate while another rejects the same certificate, we use the discrepancy as an oracle for finding flaws in individual implementations. Differential testing with frankencerts uncovered 208 discrepancies between popular SSL/TLS implementations such as OpenSSL, NSS, CyaSSL, GnuTLS, PolarSSL, MatrixSSL, etc. Many of them are caused by serious security vulnerabilities. For example, any server with a valid X.509 version 1 certificate can act as a rogue certificate authority and issue fake certificates for any domain, enabling man-in-the-middle attacks against MatrixSSL and GnuTLS. Several implementations also accept certificate authorities created by unauthorized issuers, as well as certificates not intended for server authentication. We also found serious vulnerabilities in how users are warned about certificate validation errors. When presented with an expired, self-signed certificate, NSS, Safari, and Chrome (on Linux) report that the certificate has expired-a low-risk, often ignored error-but not that the connection is insecure against a man-in-the-middle attack. These results demonstrate that automated adversarial testing with frankencerts is a powerful methodology for discovering security flaws in SSL/TLS implementations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232952 | PMC |
PLoS One
January 2024
Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea.
The rapid replacement of PSTN with VOIP networks indicates the definitive phase-out of the PBX/PABX with smartphone-based VOIP technology that uses WLAN connectivity for local communication; however, security remains a key issue, regardless of the communication coverage area. Session initiation protocol (SIP) is one of the most widely adopted VOIP connection establishment protocols but requires added security. On the Internet, different security protocols, such as HTTPS (SSL/TLS), IPSec, and S/MIME, are used to protect SIP communication.
View Article and Find Full Text PDFModern network security rests on the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. Distributed systems, mobile and desktop applications, embedded devices, and all of secure Web rely on SSL/TLS for protection against network attacks. This protection critically depends on whether SSL/TLS clients correctly validate X.
View Article and Find Full Text PDFIEEE Trans Inf Technol Biomed
January 2007
Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.
Image-data transmission from one site to another through public network is usually characterized in term of privacy, authenticity, and integrity. In this paper, we first describe a general scenario about how image is delivered from one site to another through a wide-area network (WAN) with security features of data privacy, integrity, and authenticity. Second, we give the common implementation method of the digital imaging and communication in medicine (DICOM) image communication software library with IPv6/IPv4 for high-speed broadband Internet by using open-source software.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!