An electroencephalogram recognition system considering phase features is proposed to enhance the performance of motor imagery classification in this study. It mainly consists of feature extraction, feature selection and classification. Surface Laplacian filter is used for background removal. Several potential features, including phase features, are then extracted to enhance the classification accuracy. Next, genetic algorithm is used to select sub-features from feature combination. Finally, selected features are classified by extreme learning machine. Compared with "without phase features" and linear discriminant analysis on motor imagery data from 2 data sets, the results denote that the proposed system achieves enhanced performance, which is suitable for the brain-computer interface applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1550059414555123 | DOI Listing |
Geriatrics (Basel)
December 2024
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Background: Hand dexterity is affected by normal aging and neuroinflammatory processes in the brain. Understanding the relationship between hand dexterity and brain structure in neurotypical older adults may be informative about prodromal pathological processes, thus providing an opportunity for earlier diagnosis and intervention to improve functional outcomes.
Methods: this study investigates the associations between hand dexterity and brain measures in neurotypical older adults (≥65 years) using the Nine-Hole Peg Test (9HPT) and magnetic resonance imaging (MRI).
Conscious Cogn
December 2024
School of Kinesiology, University of British Columbia, 210-6081 University Boulevard, Vancouver, BC V6T 1Z1, Canada. Electronic address:
Motor imagery (MI) is a cognitive process believed to rely on the representation developed through experience. The equivalence between MI and execution has been questioned and the relationship between experience types and MI is unclear. We tested how observational and physical practice of hand gesture sequences impacted visual and kinesthetic MI and transfer to the unpracticed effector.
View Article and Find Full Text PDFFront Neurorobot
December 2024
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China.
Non-invasive brain-computer interfaces (BCI) hold great promise in the field of neurorehabilitation. They are easy to use and do not require surgery, particularly in the area of motor imagery electroencephalography (EEG). However, motor imagery EEG signals often have a low signal-to-noise ratio and limited spatial and temporal resolution.
View Article and Find Full Text PDFJ Neural Eng
December 2024
West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, Chengdu, Sichuan, 610041, CHINA.
Objective: Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals. This paper introduces a hybrid network that employs a Transformer with modified locally linear embedding and sliding window convolution for EEG decoding.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
Lower-limb exoskeletons have become increasingly popular in rehabilitation to help patients with disabilities regain mobility and independence. Brain-computer interface (BCI) offers a natural control method for these exoskeletons, allowing users to operate them through their electroencephalogram (EEG) signals. However, the limited EEG decoding performance of the BCI system restricts its application for lower limb exoskeletons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!