Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.33324 | DOI Listing |
Infect Dis Ther
December 2024
Roche Diagnostics GmbH, Nonnenwald 2, 81377, Penzberg, Germany.
Introduction: The use of antibody titers against SARS-CoV-2, as a method of estimating subsequent infection following infection or vaccination, is unclear. Here, we investigate whether specific levels of antibodies, as markers of adaptive immunity, can serve to estimate the risk of symptomatic SARS-CoV-2 (re-) infection.
Methods: In this real-world study, laboratory data from individuals tested for SARS-CoV-2 antibodies under routine clinical conditions were linked through tokenization to a United States medical insurance claims database to determine the risk of symptomatic/severe SARS-CoV-2 infection outcomes.
Nanomicro Lett
December 2024
Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2024
Institute for Biomedical Engineering and Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 500 Zhennan Road, Shanghai, 200331, People's Republic of China.
Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
IFIMUP Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal.
In recent advancements within sensing technology, driven by the Internet of Things (IoT), significant impacts are observed on health sector applications, notably through wearable electronics like electronic tattoos (e-tattoos). These e-tattoos, designed for direct contact with the skin, facilitate precise monitoring of vital physiological parameters, including body heat, a critical indicator for conditions such as inflammation and infection. Monitoring these indicators can be crucial for early detection of chronic conditions, steering toward proactive healthcare management.
View Article and Find Full Text PDFPLoS One
December 2024
Civil Engineering Department, Lanzhou Jiaotong University, Lanzhou, China.
The Belt and Road strategy has significantly advanced the scale of infrastructure construction in the Qinghai-Tibet Plateau permafrost area. Consequently, this demands higher requirements on the strength and frost resistance of concrete (FRC) cured under low-temperature and negative-temperature conditions. Accordingly, in this study, tests on the mechanical properties and FRC were conducted under standard curing, 5 °C curing, and -3 °C curing conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!