Distribution of terfenadine and its metabolites in locusts studied by desorption electrospray ionization mass spectrometry imaging.

Anal Bioanal Chem

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.

Published: March 2015

Desorption electrospray ionization (DESI) mass spectrometry (MS) imaging was used to image locusts dosed with the antihistamine drug terfenadine. The study was conducted in order to elucidate a relatively high elimination rate of terfenadine from the locust hemolymph. In this one of the few MS imaging studies on insects, a method for cryosectioning of whole locusts was developed, and the distributions of a number of endogenous compounds are reported, including betaine and a number of amino acids and phospholipids. Terfenadine was detected in the stomach region and the intestine walls, whereas three different metabolites-terfenadine acid (fexofenadine), terfenadine glucoside, and terfenadine phosphate-were detected in significantly smaller amounts and only in the unexcreted feces in the lower part of the intestine. The use of MS/MS imaging was necessary in order to detect the metabolites. With use of DESI-MS imaging, no colocalization of the drug and the metabolites was observed, suggesting a very rapid excretion of metabolites into the feces. Additional liquid chromatography-MS investigations were performed on hemolymph and feces and showed some abundance of terfenadine and the three metabolites, although at low levels, in both the hemolymph and the feces.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-014-8292-8DOI Listing

Publication Analysis

Top Keywords

desorption electrospray
8
electrospray ionization
8
mass spectrometry
8
spectrometry imaging
8
hemolymph feces
8
terfenadine
6
metabolites
5
imaging
5
distribution terfenadine
4
terfenadine metabolites
4

Similar Publications

Spatial metabolomics and feature-based molecular networking to unveiling in-situ quality markers landscape and reflecting geographic origins of pomegranate seeds.

Food Chem

January 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China. Electronic address:

Pomegranate seeds, a by-product of pomegranate processing, are gaining attention in food industries due to their high antioxidant activity. However, the lack of quality markers reflecting activity and spatial characteristics limits their utilization and product stability. In this research, a selective and sensitive method integrating ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry with feature-based molecular networking, and desorption electrospray ionization-mass spectrometry imaging developed to identify components and locate in-situ images of quality markers via spatial metabolomics analysis.

View Article and Find Full Text PDF

Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI.

Carbohydr Polym

March 2025

Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.

View Article and Find Full Text PDF

Mass spectrometry (MS) is a valuable tool that enables label-free analysis and the ability to measure multiple molecules. The atmospheric pressure MS imaging (MSI) method usually requires tedious sample preparation. A simple ionization method with minimal sample preparation is needed for high-throughput analysis.

View Article and Find Full Text PDF

The growing popularity of e-cigarettes has raised significant concerns about the safety and potential abuse of these products. Compounds originally used in the medical field, such as etomidate, metomidate, and isopropoxate, have been illegally added to e-liquids, posing substantial risks to consumer health, and facilitating the misuse of illicit drugs. To address these concerns, this study developed a rapid and efficient method for detecting etomidate, metomidate, and isopropoxate in e-liquids using thermal desorption electrospray ionization coupling triple quadrupole mass spectrometry (TD-ESI/MS/MS).

View Article and Find Full Text PDF

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!