Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Edwardsiella tarda, a bacterial pathogen to farmed fish as well as humans, possesses the genes of two lysozyme inhibitors, ivy and mliC (ivy(Et) and mliC(Et)). We recently studied IvyEt and found it to be implicated in E. tarda virulence. In the present study, we characterized MliC(Et) in comparison with Ivy(Et) in a turbot model. MliC(Et) contains the FWSKG motif and two cysteines (C33 and C98) that are highly conserved in subgroup 1 MliCs but are of unknown functional importance. To examine the essentialness of these conserved structural features, recombinant MliC(Et) (rMliC) and its mutants bearing C33S and W79A (of the FWSKG motif) substitutions were prepared. Subsequent analysis showed that rMliC (i) inhibited lysozyme-induced lysis of a Gram-positive bacterium, (ii) reduced serum-facilitated lysozyme killing of E. tarda, and (iii) when introduced into turbot, promoted bacterial dissemination in fish tissues. The C33S mutation had no influence on the activity of rMliC, while the W79A mutation slightly but significantly enhanced the activity of rMliC. Knockout strains of either mliC(Et) or ivy(Et) were severely attenuated for the ability of tissue invasion, host lethality, serum survival, and intracellular replication. The lost virulence of the mliC transformant (TXΔmliC) was restored by complementation with an introduced mliC(Et) gene. Compared to the Δivy(Et) or ΔmliC(Et) single-knockout strains, the ΔmliC(Et) Δivy(Et) double-knockout strain was significantly impaired in most of the virulence features. Together, these results provide the first evidence that the conserved cysteine is functionally dispensable to a subgroup 1 MliC and that as a virulence factor, MliC(Et) most likely works in a concerted and parallel manner with Ivy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294240 | PMC |
http://dx.doi.org/10.1128/IAI.02473-14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!