Research has shown that prolonged frozen storage of bread dough reduces the quality of the end product. In this study, the effect of air-classified barley flour fraction rich in β-glucan (approximately 25%) on rheology and quality of frozen yeasted bread dough was investigated. Wheat flour (W) was replaced by air-classified barley flour fraction (B) at 10% without or with 1.4% vital gluten to produce β-glucan enriched barley dough (WB) or barley dough plus gluten (WB + G). Dough products were stored at -18 ºC for 8 wk and their rheological properties were investigated weekly. During frozen storage dough extensibility increased, while elastic and viscous moduli decreased. Differential scanning calorimeter and nuclear magnetic resonance data indicated that WB and WB + G dough products contained approximately 10% less freezable water and 9% more bound water compared to the control dough (W). β-Glucan enriched dough also exhibited less changes in gluten network as shown by SEM photographs. The addition of air-classified barley flour fraction at 10% in frozen dough reduced deterioration effects caused by frozen storage via minimizing water redistribution and maintaining rheological properties of frozen dough.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.12702 | DOI Listing |
Food Chem
December 2024
Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran.
Plant Foods Hum Nutr
December 2024
Food and Nutrition Laboratory, Faculty of Pharmaceutical Sciences, Food and Nutrition, University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
Barley (Hordeum vulgare) is widely used in the production of beer and distilled beverages, generating a nutrient-rich by-product known as brewer's spent grain (BSG). This study investigates the potential of brewer's spent grain flour (BSGF) as a functional ingredient to enhance the nutritional profile of bakery products, specifically chocolate cakes, while contributing to waste reduction in the food industry. The effects of partially substituting wheat flour with BSGF at 40% and 60% levels were assessed.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
To improve the defective processing of barley fermented dough, this study constructed barley model dough using reconstituted hordein/glutelin ratios (75:25, 50:50, and 25:75) and elucidated its regulatory roles and potential mechanisms. SEM and CLSM results showed that increasing the hordein ratio improved the continuity and completion of the reconstituted gluten network compared to Control, thus allowing the gluten to stretch and elongate during fermentation. Also, LF-NMR revealed that the water distribution of the reconstituted system tended to shift from a free to a bound state, contributing to water retention during the dough hydration phase.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
February 2025
CER Groupe, Analytical Laboratory, Marloie, Belgium.
A competitive direct enzyme-linked immunosorbent assay (dc-ELISA) was developed for the detection and quantification of scopolamine (SCO) in wheat flours and cereal samples (multigrain, oat and barley). The limit of quantification (IC) of the established method was 6.00 ± 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!