Multilevel control of glucose homeostasis by adenylyl cyclase 8.

Diabetologia

Université de Bordeaux, CNRS UMR 5248, Chimie et Biologie des Membranes et Nano-objets, Batiment B14, Allée Geoffrey St Hilaire, CS90063, F-33615, Pessac, France.

Published: April 2015

Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an important role in glucose-induced signalling and glucose homeostasis.

Methods: We used pharmacological and genetic approaches in beta cells to determine secretion and calcium metabolism. Furthermore, Adcy8 knockout mice were characterised.

Results: In clonal beta cells, inhibitors of adenylyl cyclases or their downstream targets reduced the glucose-induced increase in cytosolic calcium and insulin secretion. This was reproduced by knock-down of ADCY8, but not of ADCY1. These agents also inhibited glucose-induced increase in cytosolic calcium and electrical activity in primary beta cells and similar effects were observed after ADCY8 knock-down. Moreover, insulin secretion was diminished in islets from Adcy8 knockout mice. These mice were glucose intolerant after oral or intraperitoneal administration of glucose whereas their levels of glucagon-like peptide-1 remained unaltered. Finally, we knocked down ADCY8 in the ventromedial hypothalamus to evaluate the need for ADCY8 in the central regulation of glucose homeostasis. Whereas mice fed a standard diet had normal glucose levels, high-fat diet exacerbated glucose intolerance and knock-down mice were incapable of raising their plasma insulin levels. Finally we confirmed that ADCY8 is expressed in human islets.

Conclusions/interpretations: Collectively, our findings demonstrate that ADCY8 is required for the physiological activation of glucose-induced signalling pathways in beta cells, for glucose tolerance and for hypothalamic adaptation to a high-fat diet via regulation of islet insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-014-3445-zDOI Listing

Publication Analysis

Top Keywords

beta cells
16
insulin secretion
12
glucose
10
adcy8
9
glucose homeostasis
8
adenylyl cyclase
8
glucose-induced signalling
8
adcy8 knockout
8
knockout mice
8
glucose-induced increase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!