Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: BRCA1 promoter methylation has been detected in DNA from peripheral blood cells of both breast cancer patients and cancer-free females. However, the pathological significance of this epigenetic change in white blood cells (WBC) remains an open question. In this study, we hypothesized that if constitutional BRCA1 methylation reflects an elevated risk for developing breast cancer (BC), WBC that harbor methylated BRCA1 in both cancer-free females and BC patients should exhibit similar molecular changes.
Methods: BRCA1 promoter methylation was examined by methylation-specific PCR in WBC from 155 breast cancer patients and 143 cancer-free females. The Human Breast Cancer EpiTect Methyl II Signature PCR Array and The Human Breast Cancer RT2 Profilerâ„¢ PCR Array were used to study the methylation status and the expression profile of several breast cancer-related genes, respectively. In addition, we used label-free MS-based technique to study protein expression in plasma.
Results: We have shown that 14.2% of BC patients and 9.1% of cancer-free females (carriers) harbored methylated BRCA1 promoter in their WBC. Interestingly, 66.7% of patients harbored methylated BRCA1 promoter in both WBC and tumors. Importantly, we have shown the presence of epigenetic changes in 9 other BC-related genes in WBC of both patients and carriers. Additionally, BRCA1 and 15 other important cancer -related genes were found to be differentially expressed in WBC from patients and carriers as compared to controls. Furthermore, we have shown that the carriers exhibited a unique plasma protein pattern different from those of BC patients and controls, with 10 proteins similarly differentially expressed in patients and carriers as compared to controls.
Conclusions: The present results suggest the presence of a strong link between aberrant methylation of the BRCA1 promoter in WBC and breast cancer -related molecular changes, which indicate the potential predisposition of the carriers for developing breast cancer. This informs the potential use of the aberrant methylation of BRCA1 promoter in WBC as a powerful non-invasive molecular marker for detecting predisposed individuals at a very early age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289167 | PMC |
http://dx.doi.org/10.1186/1471-2407-14-830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!