Expression of Bcl2 family genes in the early phase of long-term potentiation.

Bull Exp Biol Med

Construction and Technological Institute of Computer Science, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.

Published: November 2014

Expression of Bcl2 family genes was studied during the early phase of long-term potentiation in the CA1 field of rat hippocampal slices. The level of Bax mRNA and protein increased, while the content of Bcl2 mRNA and protein decreased 30 min after tetanization of the Schaffer collaterals. Our results suggest that proteins of the Bcl2 family play a role in the mechanisms of synaptic plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-014-2696-5DOI Listing

Publication Analysis

Top Keywords

bcl2 family
12
expression bcl2
8
family genes
8
early phase
8
phase long-term
8
long-term potentiation
8
mrna protein
8
genes early
4
potentiation expression
4
genes studied
4

Similar Publications

Therapeutic Scrutiny of Lentinus polychrous with Attention to Its Antioxidant, Antimicrobial, and Anticancer Attributes.

Appl Biochem Biotechnol

January 2025

Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India.

Mushrooms, being a source of therapeutically active compounds, are of great interest to researchers due to their historical usage in traditional therapies and the significant role that natural products have played in the development of contemporary medications. Lentinus polychrous is one underutilized mushroom species collected from the laterites of West Bengal, India. Our study aims toward its taxonomic validation, deciphering the secondary metabolic fingerprint, and testing its efficiency in countering many clinical issues, including oxidative stress, growing microbial drug resistance, and cancer.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.

View Article and Find Full Text PDF

Potential biomarkers for MCL1 inhibitor sensitivity.

Cell Signal (Middlet)

January 2024

Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA.

MCL1 is an anti-apoptotic member of the BCL2 protein family, and its overexpression is associated with poor prognosis across various cancers. Small molecule inhibitors targeting MCL1 are currently in clinical trials for TNBC and other malignancies. However, one major challenge in the clinical application of MCL1 inhibitors is the inherent or acquired resistance to these drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!