Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations.
Methods: We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis.
Results: A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma.
Conclusion: We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1200/JCO.2014.58.2569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!