Laser-materials interaction is the fascinating nexus where laser physics, optical physics, and materials science intersect. Applications include microdeposition via laser-induced forward transfer of thin films, clean materials processing with femtosecond beams, creating color filters with nanoparticles, generating very high density storage sites on subpicosecond time scales, structuring solar cell surfaces for higher efficiency, making nanostructures that would be impossible by other means, and creating in-volume waveguiding structures using femtosecond laser filaments.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.00LIM1DOI Listing

Publication Analysis

Top Keywords

laser interaction
4
interaction materials
4
materials introduction
4
introduction laser-materials
4
laser-materials interaction
4
interaction fascinating
4
fascinating nexus
4
nexus laser
4
laser physics
4
physics optical
4

Similar Publications

Spin-polarized lasing in manganese doped perovskite microcrystals.

Nat Commun

December 2024

Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Spin-polarized lasers have demonstrated many superiorities over conventional lasers in both performance and functionalities. Hybrid organic-inorganic perovskites are emerging spintronic materials with great potential for advancing spin-polarized laser technology. However, the rapid carrier spin relaxation process in hybrid perovskites presents a major bottleneck for spin-polarized lasing.

View Article and Find Full Text PDF

Manipulating energy migration in nanoparticles toward tunable photochromic upconversion.

Nat Commun

December 2024

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.

Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.

View Article and Find Full Text PDF

Introduction: Single-nucleotide polymorphisms (SNPs) represent a significant genetic variation influencing individual responses to cosmetic dermatology treatments. SNP profiling offers a pathway to personalized skincare by enabling practitioners to predict patient outcomes, customize interventions, and mitigate risks.

Background: The integration of genetic insights into dermatology has gained traction, with SNP analysis revealing predispositions in skin characteristics, such as collagen degradation, pigmentation, and inflammatory responses.

View Article and Find Full Text PDF

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!