Sequence-specific generation of 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine in single-stranded unmodified DNA.

ACS Chem Biol

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Published: February 2015

DNA lesions such as 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) are ubiquitously present in genomes of different organisms and show increasing levels upon exposure to mutagenic substances or under conditions of chronic inflammations and infections. To facilitate investigations of the mutagenic properties and repair mechanisms of etheno-base adducts, access to oligonucleotides bearing these lesions at defined positions is of great advantage. In this study, we report a new synthetic strategy to sequence-specifically generate etheno-adducts in a single-stranded unmodified DNA sequence making use of a DNA-templated approach that positions the alkylating agent close in space to the respective target base. In contrast to solid-phase synthesis of modified oligonucleotides such DNA-templated methods can be applied to single-stranded nucleic acids of unrestricted lengths. The modular nature of the system allows straightforward adaptation to different sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb500497pDOI Listing

Publication Analysis

Top Keywords

single-stranded unmodified
8
unmodified dna
8
sequence-specific generation
4
generation 1n6-ethenoadenine
4
1n6-ethenoadenine 3n4-ethenocytosine
4
3n4-ethenocytosine single-stranded
4
dna dna
4
dna lesions
4
lesions 1n6-ethenoadenine
4
1n6-ethenoadenine εa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!