Snore analysis techniques have recently been developed for sleep studies. Most snore analysis techniques require reliable methods for the automatic classification of snore and breathing sounds in the sound recording. In this study we focus on this problem and propose an automated method to classify snore and breathing sounds based on the novel feature, 'positive/negative amplitude ratio (PNAR)', to measure the shape of the sound signal. The performance of the proposed method was evaluated using snore and breathing recordings (snore: 22,643 episodes and breathing: 4664 episodes) from 40 subjects. Receiver operating characteristic (ROC) analysis showed that the proposed method achieved 0.923 sensitivity with 0.918 specificity for snore and breathing sound classification on test data. PNAR has substantial potential as a feature in the front end of a non-contact snore/breathing-based technology for sleep studies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0967-3334/35/12/2489DOI Listing

Publication Analysis

Top Keywords

snore breathing
20
breathing sounds
12
snore
8
classification snore
8
snore analysis
8
analysis techniques
8
sleep studies
8
proposed method
8
breathing
6
signal shape
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!