Embedded performance validity tests (PVTs) have been criticized for their poor specificity and sensitivity. Aggregated models of embedded PVTs have been proposed to improve their classification accuracy; however, limitations to aggregation-based improvement of PVTs have yet to be explored. The current study evaluated the classification accuracy of 3 types of models of embedded PVTs in the Halstead-Reitan Neuropsychological Battery for Adults (HRNB): a single-, a pairwise-, and a triple-failure model. In addition, this study evaluated the impact of aggregating between 1 and 6 embedded PVTs in each of these 3 types of models. Analyzing only the 2, 4, and 6 most discriminating embedded PVTs in the single-, pairwise-, and triple-failure models maximized classification accuracy, respectively. Comparisons across these models indicated that the single-failure model including only the two most discriminating embedded PVTs had the best classification accuracy; however, classification accuracy was only minimally improved in this model relative to analyzing just Reliable Digit Span. These results suggest that aggregation of embedded PVTs from the HRNB does not substantially improve their classification accuracy and that the benefits of aggregating PVTs may only emerge when the PVTs entered into the aggregated models have sufficient classification accuracy on their own.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/23279095.2014.921167 | DOI Listing |
Int J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
PLoS One
January 2025
Faculty of Science and Engineering, School of Computer Science, University of Hull, Hull, United Kingdom.
Mold defects pose a significant risk to the preservation of valuable fine art paintings, typically arising from fungal growth in humid environments. This paper presents a novel approach for detecting and categorizing mold defects in fine art paintings. The technique leverages a feature extraction method called Derivative Level Thresholding to pinpoint suspicious regions within an image.
View Article and Find Full Text PDFPLoS One
January 2025
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, RP China.
This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features.
View Article and Find Full Text PDFPLoS One
January 2025
School of Computer Science and Engineering, Changchun University of Technology, Changchun, Jilin, China.
Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
In human activity-recognition scenarios, including head and entire body pose and orientations, recognizing the pose and direction of a pedestrian is considered a complex problem. A person may be traveling in one sideway while focusing his attention on another side. It is occasionally desirable to analyze such orientation estimates using computer-vision tools for automated analysis of pedestrian behavior and intention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!