Flagellin is the major structural component of flagella expressed by Pseudomonas aeruginosa (PA) and other bacteria. This protein has been shown to activate the Toll-like receptor TLR5 and the Nod-like receptor Nlrc4/Ipaf, culminating in the expression of innate cytokines and antimicrobial molecules. In this study, we tested the hypothesis that TLR5 and Nlrc4 in combination are required for maximal protective lung innate mucosal immunity against PA. To test this hypothesis, we compared innate immune responses in wild-type (WT) C57B6 mice challenged with PA intratracheally to those observed in mice genetically deficient in TLR5 (TLR5(-/-)) or Nlrc4 (Nlrc4(-/-)) alone or in combination (TLR5/Nlrc4(-/-)). As compared to WT, TLR5(-/-) and Nlrc4(-/-) mice, we observed a significant increase in mortality in TLR5/Nlrc4(-/-) mice, which was associated with a >5,000-fold increase in lung PA colony-forming units and systemic bacterial dissemination. The increased mortality observed in double-deficient mice was not attributable to differences in lung leukocyte influx or lung injury responses. Levels of biologically active IL-1β and IL-18 were reduced in the bronchoalveolar lavage fluid from PA-infected Nlrc4(-/-) and TLR5/Nlrc4(-/-) but not TLR5(-/-) mice, indicating the requirement for Nlrc4-dependent caspase-1 activation. Similarly, decreased production of biologically active IL-1β and activation of caspase-1 was observed in PA-stimulated pulmonary macrophages isolated from Nlrc4(-/-) and TLR5/Nlrc4(-/-) but not TLR5(-/-) mice, whereas the expression of iNOS and the production of NO were significantly reduced in cells from double-mutant but not single-mutant mice. Collectively, our findings indicate that TLR5 and Nlrc4 have both unique and redundant roles in lung antibacterial mucosal immunity, and the absence of both pathogen recognition receptors results in an increase in susceptibility to invasive lung infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348217PMC
http://dx.doi.org/10.1159/000367790DOI Listing

Publication Analysis

Top Keywords

tlr5 nlrc4
12
mucosal immunity
12
protective lung
8
pseudomonas aeruginosa
8
mice
8
biologically active
8
active il-1β
8
nlrc4-/- tlr5/nlrc4-/-
8
tlr5/nlrc4-/- tlr5-/-
8
tlr5-/- mice
8

Similar Publications

Toll-like receptors (TLRs) and inflammasomes belong to the pattern recognition receptors (PRRs) of innate immunity identifying conserved compounds produced by pathogens or discharged by injured cells. Different cell subsets in the human urogenital system, such as epithelial cells and infiltrating leukocytes, express different kinds of TLRs (such as TLR2, TLR3, TLR4, TLR5 and TLR9) as well as inflammasomes (such as NLRP3, NLRC4 and AIM2). Various types of the Trichomonas vaginalis-derived components such as glycosyl-phosphatidylinositol (GPI), T.

View Article and Find Full Text PDF

Upregulation of TLR5 indicates a favorable prognosis in prostate cancer.

Prostate

August 2023

Department of Translational Medical Sciences, Center for Infectious and Inflammatory Diseases, Institute of Bioscience and Technology, Texas A&M University, Houston, Texas, USA.

Background: Toll-like receptors (TLRs) are the key sensors of innate immunity for triggering immune responses against infections. TLRs are well known to be expressed and activated in innate immune cells, such as macrophage and dendritic cells, but we and others have found that some TLRs are also functional in epithelial cells. However, the role of an epithelial TLR in prostate cancer remains elusive.

View Article and Find Full Text PDF

Deimmunization of flagellin adjuvant for clinical application.

Curr Opin Virol

June 2023

Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea; Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea.

Flagellin is the cognate ligand for host pattern recognition receptors, toll-like receptor 5 (TLR5) in the cell surface, and NAIP5/NLRC4 inflammasome in the cytosol. TLR5-binding domain is located in D1 domain, where crucial amino acid sequences are conserved among diverse bacteria. The highly conserved C-terminal 35 amino acids of flagellin were proved to be responsible for the inflammasome activation by binding to NAIP5.

View Article and Find Full Text PDF

Background: A recombinant fusion protein combining the adjuvant and TLR5-ligand flagellin with the major birch pollen allergen Bet v 1 (rFlaA:Betv1) has been suggested to prevent the manifestation of birch allergy. Noteworthy, rFlaA:Betv1 induced both pro- and anti-inflammatory responses which were differentially regulated. However, the mechanism by which flagellin fusion proteins modulate allergen-specific immune responses, especially the mechanisms underlying IL-1β secretion and their contribution to the overall immune responses remains elusive.

View Article and Find Full Text PDF

LNCGM1082-mediated NLRC4 activation drives resistance to bacterial infection.

Cell Mol Immunol

May 2023

Department of Immunology, Nankai University School of Medicine and Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China.

The activation of NLRC4 is a major host response against intracellular bacteria infection. However, NLRC4 activation after a host senses diverse stimuli is difficult to understand. Here, we found that the lncRNA LNCGM1082 plays a critical role in the activation of NLRC4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!