Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems.

Environ Sci Technol

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China.

Published: December 2014

Contamination by tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is a matter of environmental concern. Here, we investigated the fate and metabolites of (14)C-TBBPA in a submerged soil with an anoxic-oxic interface and planted or not with rice (Oryza sativa) and reed (Phragmites australis) seedlings. In unplanted soil, TBBPA dissipation (half-life 20.8 days) was accompanied by mineralization (11.5% of initial TBBPA) and the substantial formation (60.8%) of bound residues. Twelve metabolites (10 in unplanted soil and 7 in planted soil) were formed via four interconnected pathways: oxidative skeletal cleavage, O-methylation, type II ipso-substitution, and reductive debromination. The presence of the seedlings strongly reduced (14)C-TBBPA mineralization and bound-residue formation and stimulated debromination and O-methylation. Considerable radioactivity accumulated in rice (21.3%) and reed (33.1%) seedlings, mainly on or in the roots. While TBBPA dissipation was hardly affected by the rice seedlings, it was strongly enhanced by the reed seedlings, greatly reducing the half-life (11.4 days) and increasing monomethyl TBBPA formation (11.3%). The impact of the interconnected aerobic and anaerobic transformation of TBBPA and wetland plants on the profile and dynamics of the metabolites should be considered in phytoremediation strategies and environmental risk assessments of TBBPA in submerged soils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es503383hDOI Listing

Publication Analysis

Top Keywords

tbbpa
8
tetrabromobisphenol tbbpa
8
tbbpa submerged
8
submerged soil
8
unplanted soil
8
tbbpa dissipation
8
soil
5
seedlings
5
degradation metabolism
4
metabolism tetrabromobisphenol
4

Similar Publications

Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant.

Sci Total Environ

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:

Article Synopsis
  • The study investigates the effects of Bisphenol A (BPA) and Tetrabromobisphenol A (TBBPA) on the dynamics of biological membranes, focusing on how these persistent organic pollutants impact myeloid cell lines.
  • It was found that TBBPA specifically disrupts the plasma membrane's biophysical homeostasis, increasing mobility and decreasing order, while BPA showed no significant effects.
  • The findings highlight TBBPA's potential to impair immune function, emphasizing the environmental toxicity concerns associated with persistent organic pollutants.
View Article and Find Full Text PDF

Adequate levels of thyroid hormones (THs) in the fetal brain are vital for early neurodevelopment. Most of the TH in fetal brain is derived from circulating thyroxine (T4), which gets locally converted into the biologically active triiodothyronine (T3) by deiodinase enzymes. One of the major routes of TH into the brain is through the blood-cerebrospinal fluid barrier (BCSFB).

View Article and Find Full Text PDF

Typical endocrine disrupting chemicals in newborns with congenital hypothyroidism: Concentrations, exposure assessment, and potential risks.

J Hazard Mater

December 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Congenital hypothyroidism (CH) has been reported as a prevalent endocrine disorder in newborns. Endocrine disrupting chemicals (EDCs) have been widely detected in humans and can influence endocrine function, especially thyroid function, and neonates as a susceptible population may be more prone to suffer from CH through exposure to various EDCs. In this study, the concentrations and composition profiles of several typical EDCs were determined in 266 serum samples collected from newborns with (n = 136) and without CH (n = 130) in Beijing, China from 2018 to 2020.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes.

View Article and Find Full Text PDF

Perfluorooctanoic acid (PFOA) and tetrabromobisphenol A (TBBP-A) are emerging environmental contaminants with recognized potential health and ecological risks. This study investigated the effects of PFOA and TBBP-A exposure on the global of metabolites of silkworm gut with GC-MS metabolomics. Our results revealed distinct metabolic alterations in silkworms exposed to PFOA and TBBP-A, highlighting their differential impacts on silkworm health and productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!