Background: Ezetimibe is a potent inhibitor of Niemann-Pick type C1-Like 1 and has been approved for the treatment of hypercholesterolemia. Our preliminary study showed that ezetimibe promotes cholesterol efflux from vascular smooth muscle cells (VSMCs). Our aim was to investigate the cellular mechanisms underlying the ezetimibe actions.
Methods And Results: Rat VSMCs were converted to foam cells by incubation with cholesterol:methyl-β-cyclodextrin. The intracellular free cholesterol, total cholesterol, and the ratio of cholesteryl ester to total cholesterol were decreased after the incubation of VSMCs with different concentrations of ezetimibe (3, 10, 30, and 30 μmol/l) or treated with 30 μmol/l of ezetimibe for different time periods (6, 12, 24, and 48 h). Our results also showed that the expression of caveolin-1, liver X receptor α, and ATP-binding cassette transporter ABCA1 was enhanced, but the expression of nSREBP-1c was decreased in a concentration- and time-dependent manner. RNA interference was used to determine the roles of caveolin-1 and SREBP-1 in the lipid-lowering effect of ezetimibe. The results showed that caveolin-1 was involved in the regulation of intracellular cholesterol content, and the expression of caveolin-1 was repressed by SREBP-1.
Conclusion: The present study indicates that ezetimibe protects VSMCs from cholesterol accumulation by regulating the expression of lipid metabolism-related genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000368803 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!