Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry. Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11,600 nucleotides encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences, the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however, the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera. In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon, with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234470 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112517 | PLOS |
Infections with bacteria of the genus Pasteurella have increased in occurrence in Atlantic salmon (Salmo salar) farms in Norway since 2018. This increase coincides with increased use of non-medicinal treatments against the parasitic salmon louse, Lepeophtheirus salmonis, in the farms. Here, we analysed the statistical association between the use of non-medicinal delousing methods and pasteurellosis in salmon farming in western Norway, from 2018 to 2023.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:
During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia.
Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified -specific synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China.
Gaussia Luciferase (GLuc) is a renowned reporter protein that can catalyze the oxidation of coelenterazine (CTZ) and emit a bright light signal. GLuc comprises two consecutive repeats that form the enzyme body and a central putative catalytic cavity. However, deleting the C-terminal repeat only limited reduces the activity (over 30% residual luminescence intensity detectable), despite being a key part of the cavity.
View Article and Find Full Text PDFActa Parasitol
January 2025
Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil.
Introduction: Copepods of the genus Colobomatus Hesse, 1873 are parasites associated with subcutaneous spaces of marine fish. To date, around 76 species of the genus have been described in marine ecosystems, but few species have been recorded in the South Atlantic Ocean.
Methods: One hundred and eight specimens of Co.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!