We extend the functionality of a low-cost CW diode laser coherent lidar from radial wind speed (scalar) sensing to wind velocity (vector) measurements. Both speed and horizontal direction of the wind at ~80 m remote distance are derived from two successive radial speed estimates by alternately steering the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering is implemented optically with no moving parts by means of a controllable liquid-crystal retarder (LCR). The LCR switches the polarization between two orthogonal linear states of the lidar beam so it either transmits through or reflects off a polarization splitter. The room-temperature switching time between the two LOS is measured to be in the order of 100 μs in one switch direction but 16 ms in the opposite transition. Radial wind speed measurement (at 33 Hz rate) while the lidar beam is repeatedly steered from one LOS to the other every half a second is experimentally demonstrated - resulting in 1 Hz rate estimates of wind velocity magnitude and direction at better than 0.1 m/s and 1° resolution, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.026674DOI Listing

Publication Analysis

Top Keywords

wind velocity
12
diode laser
8
liquid-crystal retarder
8
radial wind
8
wind speed
8
lidar beam
8
wind
6
lidar
5
laser lidar
4
lidar wind
4

Similar Publications

Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.

View Article and Find Full Text PDF

Evaluation of windproof and sand fixation effect of protective system in the Desert oasis ecotone of Mingsha Mountain Dunhuang.

Sci Rep

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Dunhuang Gobi Desert Ecology and Environment Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.

The Desert oasis ecotone (DOE) protects the oasis from wind and sand intrusion, thereby playing a crucial role in controlling desertification. However, there is limited knowledge about how DOE functions in windproof and sand-fixation. Therefore this study employs a three-dimensional (3D) laser scanner to monitor surface accumulation and erosion, and through field observations, collects data on wind profiles, grain size, and sand transport rates to uncover the role of DOE in aeolian sand protection.

View Article and Find Full Text PDF
Article Synopsis
  • Drones are improving nutrient management by allowing precise spraying techniques, which are especially important under climate change.
  • Current research focuses on optimizing various parameters like flight height, pressure, and nozzle configuration to enhance spray efficiency and reduce waste.
  • The study found that a hover height of 2.0 meters provided the best spray uniformity and distribution, showing the effectiveness of careful drone operation in agricultural practices.
View Article and Find Full Text PDF

Solar Wind Irradiation of Methane and Methane-Water Ices: A Molecular Dynamics Approach.

ACS Earth Space Chem

December 2024

Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.

Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.

View Article and Find Full Text PDF

Rain erosion induced by raindrops impacting wind turbine blades at high velocity can change the aerodynamic characteristics of the blades and increase maintenance costs. Previous numerical studies on rain erosion have not considered the curvature of the blade leading-edge surfaces and assumed them to be flat surfaces. This study established a fluid-solid coupled numerical model combining the finite element method and smooth particle hydrodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!