We report the design of a short-wave infrared continuous-wave light source featuring a 20 mW average output power, and with a wavelength that can be freely selected in the 2000-2100 nm range amid a low power ripple. The operating principle relies on the simultaneous broadband parametric conversion of two seeds in a highly nonlinear silica fiber pumped in the L-band followed by amplification and equalization in an appended thulium- and holmium- doped fiber cascade directly pumped by their respective previous stage.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.026635DOI Listing

Publication Analysis

Top Keywords

parametric conversion
8
broadly tunable
4
tunable source
4
source 2050
4
2050 based
4
based wideband
4
wideband parametric
4
conversion thulium-holmium
4
thulium-holmium amplification
4
amplification cascade
4

Similar Publications

The land use transition plays an important role for terrestrial environmental services, which had a mixed impact of positive and negative on the groundwater and terrestrial water resource. The health of ecological systems and groundwater depends on the mapping and management of land use. The Ganga basin is one of the most densely populated and agriculture-intensive river systems in the South Asia and the world.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Unified space-time description of pulsed twin beams.

Philos Trans A Math Phys Eng Sci

December 2024

Istituto di Fotonica e Nanotecnologie del CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.

This work provides a mathematical derivation of a quasi-stationary (QS) model for multimode parametric down-conversion (PDC), which was presented in Gatti . (Gatti ., .

View Article and Find Full Text PDF

Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays.

Phys Rev Lett

December 2024

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.

Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.

View Article and Find Full Text PDF

An acoustic metamaterial with space-time modulated densitya).

J Acoust Soc Am

December 2024

Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, USA.

Space-time modulation opens the door for unprecedented wave behavior control, such as nonreciprocal wave manipulation. Here is proposed a one-dimensional space-time modulated membrane system aiming to realize a kind of acoustic metamaterial with space-time modulated effective density. Three different approaches, namely, the effective medium method, transfer matrix method, and time-domain simulation, are applied to analyze the acoustic response of the system under a monochromatic incidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!