Modulating human mesenchymal stem cell plasticity using micropatterning technique.

PLoS One

Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.

Published: January 2016

AI Article Synopsis

  • The study investigates whether human mesenchymal stem cells (hMSCs) can maintain their myocardial lineage commitment after being subjected to different growth conditions, following previous findings that micropatterning induced this commitment.
  • Four experimental groups were designed to assess the robustness of this differentiation, comparing stem cells in controlled conditions and various induction media.
  • Results showed that hMSCs that were previously committed to myocardial lineage maintained this commitment even when exposed to non-myocardial growth conditions, while those not initially primed were influenced more by biochemical cues than by their micropatterned shape.

Article Abstract

In our previous work, we have reported that enforced elongation of human mesenchymal stem cells (hMSCs) through micropatterning promoted their myocardial lineage commitment. However, whether this approach is robust enough to retain the commitment when subsequently subjected to different conditions remains unsolved. This de-differentiation, if any, would have significant implication on the application of these myocardial-like hMSCs either as tissue engineered product or in stem cell therapy. Herein, we investigated the robustness of micropatterning induced differentiation by evaluating the retention of myocardial differentiation in patterned hMSCs when challenged with non-myocardial differentiation cues. Altogether, we designed four groups of experiments; 1) Patterned hMSCs cultured in normal growth medium serving as a positive control; 2) Patterned hMSCs cultured in normal growth medium for 14 days followed by osteogenic and adipogenic media for next 7 days (to study the robustness of the effect of micropatterning); 3) Patterned hMSCs (initially grown in normal growth medium for 14 days) trypsinized and recultured in different induction media for next 7 days (to study the robustness of the effect of micropatterning without any shape constrain) and 4) Patterned hMSCs cultured in osteogenic and adipogenic media for 14 days (to study the effects of biochemical cues versus biophysical cues). It was found that hMSCs that were primed to commit to myocardial lineage (Groups 2 and 3) were able to maintain myocardial lineage commitment despite subsequent culturing in osteogenic and adipogenic media. However, for hMSCs that were not primed (Group 4), the biochemical cues seem to dominate over the biophysical cue in modulating hMSCs differentiation. It demonstrates that cell shape modulation is not only capable of inducing stem cell differentiation but also ensuring the permanent lineage commitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234627PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113043PLOS

Publication Analysis

Top Keywords

patterned hmscs
20
stem cell
12
myocardial lineage
12
lineage commitment
12
robustness micropatterning
12
hmscs cultured
12
normal growth
12
growth medium
12
osteogenic adipogenic
12
adipogenic media
12

Similar Publications

Article Synopsis
  • Transplantation of injury/ischemia-induced stem cells (iSCs) from post-stroke human brains has been shown to improve neurological functions in stroke-affected mice, although their effectiveness compared to mesenchymal stem cells (MSCs) remains uncertain.
  • In experiments, both h-iSCs and h-MSCs were transplanted into mice, with results indicating that while both types activated neural stem/progenitor cells (NSPCs), h-iSCs led to greater improvements in a variety of behavioral tasks.
  • Further analysis revealed that interactions between NSPCs and h-iSCs promoted the transdifferentiation toward functional neurons more effectively than interactions with h-MSCs, suggesting h-iSCs may
View Article and Find Full Text PDF

Post-symptomatic administration of hMSCs exerts therapeutic effects in SCA2 mice.

Stem Cell Res Ther

November 2024

School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.

Article Synopsis
  • Defects in the ataxin-2 protein and its gene are linked to spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disorder, which has prompted interest in using human mesenchymal stem cells (hMSCs) for potential treatment.
  • In a study, hMSCs were injected into SCA2 mice, resulting in improved motor coordination and protection of Purkinje cells as assessed over several weeks.
  • The findings suggest that repeated hMSC administration helps preserve cerebellar neurons and enhances neurotrophic support, offering a promising avenue for alleviating symptoms of SCA2.
View Article and Find Full Text PDF
Article Synopsis
  • * Unlike traditional 4D materials that depend on external factors like heat or light, this bioink utilizes internal stimuli from cell-contractile forces (CCF) for shape changes.
  • * The bioprinted structures can be patterned to achieve complex transformations, providing a more biomimetic approach for creating sophisticated cell-laden constructs that also promote chondrogenic differentiation of human mesenchymal stem cells.
View Article and Find Full Text PDF

Accumulatively, cellular behaviours triggered by biochemical cues have been widely explored and the focus of research is gradually shifting to biophysical cues. Compared to physical parameters such as stiffness, substrate morphology and viscoelasticity, the influence of viscosity on cellular behaviours is relatively unexplored and overlooked. Thus, in this study, the influence of viscosity on the adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was investigated by adjusting the viscosity of the culture medium.

View Article and Find Full Text PDF

Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!