A technique for experimental determining the coherent-mode structure of electromagnetic field is proposed. This technique is based on the coherence measurements of the field in some reference basis and represents a nontrivial vector generalization of the dual-mode field correlation method recently reported by F. Ferreira and M. Belsley [Opt. Lett.38(21), 4350 (2013)]. The justifiability and efficiency of the proposed technique is illustrated by an example of determining the coherent-mode structure of some specially generated and experimentally characterized secondary electromagnetic source.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.026232DOI Listing

Publication Analysis

Top Keywords

determining coherent-mode
12
coherent-mode structure
12
experimental determining
8
electromagnetic field
8
reference basis
8
proposed technique
8
structure vector
4
vector electromagnetic
4
field
4
field decomposition
4

Similar Publications

The dressed atom approach provides a tool to investigate the dynamics of an atom-laser system by fully retaining the quantum nature of the coherent mode. In its standard derivation, the internal atom-laser evolution is described within the rotating-wave approximation, which determines a doublet structure of the spectrum and the peculiar fluorescence triplet in the steady state. However, the rotating wave approximation may fail to apply to atomic systems subject to femtosecond light pulses, light-matter systems in the strong-coupling regime or sustaining permanent dipole moments.

View Article and Find Full Text PDF

Fiber-coupled microdisks are a promising platform for enhancing the spontaneous emission from color centers in diamond. The measured cavity-enhanced emission from the microdisk is governed by the effective volume (V) of each cavity mode, the cavity quality factor (Q), and the coupling between the microdisk and the fiber. Here we observe room temperature photoluminescence from an ensemble of nitrogen-vacancy centers into high Q/V microdisk modes, which when combined with coherent spectroscopy of the microdisk modes, allows us to elucidate the relative contributions of these factors.

View Article and Find Full Text PDF

Atlantic multidecadal variability is a coherent mode of natural climate variability occurring in the North Atlantic Ocean, with strong impacts on human societies and ecosystems worldwide. However, its periodicity and drivers are widely debated due to the short temporal extent of instrumental observations and competing effects of both internal and external climate factors acting on North Atlantic surface temperature variability. Here, we use a paleoclimate database and an advanced statistical framework to generate, evaluate, and compare 312 reconstructions of the Atlantic multidecadal variability over the past millennium, based on different indices and regression methods.

View Article and Find Full Text PDF

Background: Although both speckle plethysmography (SPG) and photoplethysmography (PPG) examine pulsatile changes in the vasculature using opto-electronics, PPG has a long history, whereas SPG is relatively new and less explored. The aim of this study was to compare the effects of integration time and light-source coherence on signal quality and waveform morphology for reflective and transmissive rSPG and rPPG. Methods: (A) Using time-domain multiplexing, we illuminated 10 human index fingers with pulsed lasers versus LEDs (both at 639 and 850 nm), in transmissive versus reflective mode.

View Article and Find Full Text PDF

Representation of the cross-spectral density (CSD) function of an optical source or beam as the incoherent superposition of mutually uncorrelated modes are widely used in imaging systems and in free space optical communication systems for simplification of the analysis and reduction of the time-consuming integral calculations. In this paper, we examine the equivalence and the differences among three modal representation methods: coherent-mode representation (CMR), pseudo-mode representation (PMR) and random mode representation (RMR) for the Gaussian Schell-model (GSM) source class. Our results reveal that for the accurate reconstruction of the CSD of a generic GSM source, the CMR method requires superposition of the least number of optical modes, followed by PMR and then by RMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!