Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In a ground-to-satellite communication system with a preset EDFA, the EDFA's performance will be affected by space environment. With 250 Gy radiation, the EDFA's gain decreases by 2 dB from 19.97 dB at 20 °C. The BER increases by 2.5 orders of magnitude from 10(-10), and increases more with more radiation. The situation aggravates when the temperature rises by 73 °C. The laser's divergence-angle and transmitter radius have optimal values to make the lowest BER and increasing receiver diameter makes lower BERs, so setting these parameters with appropriate values will compensate the degradation caused by EDFA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.025354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!