Truncation of the flash-lag effect by a fixed spatial landmark.

J Opt Soc Am A Opt Image Sci Vis

Published: September 2014

The flash-lag effect is a visual illusion where a moving image is perceived to be advanced in its spatial location relative to a flashed image. Multiple studies have shown that the flash-lag effect can be enhanced by increasing the uncertainty of the moving and/or flashed images. However, little is known about the effect of task-irrelevant visual objects on the flash-lag effect. We were interested to see whether a task-irrelevant spatial landmark might reduce uncertainty and hence reduce the flash-lag effect. We placed a fixed bar between moving and flashed bars while measuring the flash-lag effect in six participants. For most participants, the fixed bar substantially truncated the flash-lag effect. The effect was maximal when the fixed bar was aligned with the flashed bar and decreased when the fixed bar was positioned more peripherally. A second experiment with two participants used a smaller fixed bar; the smaller bar had less truncation effect in one participant, while the other participant showed similar truncation regardless of the fixed bar size. Our results support models that place the locus of the flash-lag effect in higher-order brain areas, e.g., the parietal lobe.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.31.001993DOI Listing

Publication Analysis

Top Keywords

fixed bar
24
flash-lag fixed
8
spatial landmark
8
bar
8
fixed
7
flash-lag
7
truncation flash-lag
4
fixed spatial
4
landmark flash-lag
4
flash-lag visual
4

Similar Publications

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

Background: Tibial bone fractures in the malleolar regions are a major concern during the early postoperative period of total ankle replacement (TAR), affecting patient outcomes such as stability and recovery. Design, placement, and anatomic misalignment of implant components can contribute to malleolar fractures. The aim of this study is to understand the influence of implant design features, including keel, peg, stem, and bar type design, and bone-implant interfacial conditions on malleolar fracture following TAR.

View Article and Find Full Text PDF

Comparison of Ceramic Bonding to Cobalt-Chromium, Zirconia and Nickel-Chromium Alloys Fabricated Using of Various Techniques.

J Biomed Mater Res B Appl Biomater

January 2025

Dental Materials Unit, Center for Dental Medicine, Clinic for Masticatory Disorders and Dental Biomaterials, University of Zurich, Zurich, Switzerland.

The purpose of this study was to evaluate the characteristics of the ceramic bonding to cobalt-chromium (Co-Cr) alloys fabricated by casting, milling, and additive manufacturing, compared with zirconia and nickel-chromium. One hundred specimens (N = 100), prepared with the dimensions of 25 × 3 × 0.5 mm, were assigned to five groups (n = 20): presintered milled Co-Cr (Group M), additively manufactured Co-Cr (Group SLM), cast Co-Cr (Group C), presintered zirconia (Group Zi), and cast Ni-Cr (Group Ni).

View Article and Find Full Text PDF

Objective: Post-cesarean delivery (CD) acute pain may progress to chronic pain, which may impair maternal bonding and child development. In 2013, we compared the efficacy of versus on-demand oral analgesia for post-caesarean pain in a randomized-controlled-trial. The fixed-time-interval group had received scheduled paracetamol, tramadol, and diclofenac regardless of pain level, and the on-demand group received medication as needed, with oxycodone reserved for unrelieved pain in both groups.

View Article and Find Full Text PDF

Bacterial synergies amplify nitrogenase activity in diverse systems.

ISME Commun

January 2024

School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.

Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!