Background: Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.
Objective: To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves.
Methods And Results: We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location.
Conclusions: The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234245 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110662 | PLOS |
Circ Arrhythm Electrophysiol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).
Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.
View Article and Find Full Text PDFJACC Clin Electrophysiol
January 2025
Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia. Electronic address:
Background: Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.
Objectives: This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.
Methods: In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters.
J Interv Card Electrophysiol
January 2025
Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Background: The conventional mapping approach for the atrioventricular accessory pathway (AP) involves point-by-point mapping to identify the connection sites of the AP to the atria or ventricle and accurate interpretation of local electrograms. Omnipolar mapping technology (OMT) explains how vector and wave speed are produced by using both unipolar and bipolar signals to obtain omnipolar signals, directions, and conduction velocity. The aim of this study is to verify the effectiveness of OMT for catheter ablation of AP.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
Background: Atypical atrial tachycardia (AT) is a commonly encountered rhythm disorder, especially in patients with underlying atrial scar. Peak frequency (PF) annotation of bipolar electrograms is a novel method that mainly aims to discriminate near-field and far-field signals.
Objective: This study aimed to evaluate the PF annotation of low-voltage zones and deceleration zones during sinus/paced rhythm and their role in predicting the critical isthmus (CI) and termination sites of atypical ATs.
Europace
January 2025
Division of Cardiology, McGill University Medical Center, Montreal, Quebec, Canada.
Background: Loss of bipolar electrograms immediately after pulsed field ablation (PFA) makes lesion durability assessment challenging.
Objective: The aim of this trial (NCT06700226) was to evaluate a novel ablation system that can optically predict lesion durability by detecting structural changes in the tissue during ablation.
Methods: Patients with paroxysmal atrial fibrillation underwent pulmonary vein isolation (PVI) using PFA (AblaView®, MedLumics).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!