The objective of the present study was to develop ethyl acetate (EA) green nanoemulsions for removal of alizarin red (AR) from water. Developed formulations were characterized in terms of thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity, viscosity, refractive index and per cent transmittance. Adsorption studies were performed by mixing small amounts of green nanoemulsions (1 ml) with relatively large amounts of AR solution (10 ml). It was observed that the droplet size, viscosity and % AR removal efficiency were influenced significantly by EA concentration of green nanoemulsions. However, contact time had negligible influence on % AR removal. Based on lowest droplet size (21.3 nm), lowest viscosity (19.3 Pa.s) and highest % AR removal efficiency (72.5%), green nanoemulsion E(1) containing 4.0% w/w of EA, 16.0% w/w of Triton-X100, 8.0% w/w of ethylene glycol and 72% w/w of water was optimized as the best green nanoemulsion composition for removal of AR from its bulk aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2014.400 | DOI Listing |
J Food Sci Technol
February 2025
Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.
Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
In the original publication [...
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.
The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.
View Article and Find Full Text PDFSci Rep
January 2025
Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt.
EFSA J
December 2024
Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia Universidad de Sevilla Sevilla Spain.
Lately, the entire society's focus has turned towards consuming more natural food products and the production of chemicals obtained utilising green technologies. The use of chemicals as food additives is a concern for consumers. For this reason, the search for natural and more sustainable additives is a key step to control food risks while meeting consumers' requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!