High-performance liquid chromatography (HPLC) plays an important role in biotechnology, and a majority of chromatographic separations use gradient elution. While gradient generators can be built in different formats, binary pumps or quaternary pumps are most frequently used for gradient generator constructions. We have recently developed a high-pressure electroosmotic pump (EOP); the pump can be manufactured at a cost of a few hundred dollars. However, it is challenging to use this pump to deliver a gradient eluent directly. In this study, we first improve the monolith preparation by applying a pressure to the monomer solution during polymerization. We assemble a binary EOP gradient generator and discuss the relationship between the gradient profile and voltage applied to the EOP. We demonstrate the feasibility of the binary EOP gradient generator for generating a smooth and reproducible nanoflow gradient. After integration of the gradient generator into a miniaturized HPLC system, we use the HPLC system for separating peptide mixtures from trypsin-digested proteins. The performance comparison between the above miniaturized HPLC system and an Agilent 1200 HPLC system exhibits comparable efficiencies, resolutions, and peak capacities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac503223r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!