X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn5056223 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFAdv Colloid Interface Sci
December 2024
Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China. Electronic address:
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.
View Article and Find Full Text PDFACS Nano
January 2025
Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Egyptian Petroleum Research Institute, Nasr City, Cairo, 11727, Egypt.
This study involves the design, divergent synthesis, conformational and structural analysis, target prediction, and molecular docking simulations of novel nano N-thiazolylpyridylamines 2-7 and 10 as potential cyclin-dependent kinase 2 (CDK2) inhibitors. Using a divergent synthesis approach, the compounds were designed with structural variation and optimization in mind. The conformational and structural properties were explored through various spectroscopic techniques, confirming the structure, stability, and preferred conformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!