NAD-dependent d-lactate dehydrogenases (d-LDHs) reduce pyruvate into d-lactate with oxidation of NADH into NAD(+). Although non-allosteric d-LDHs from Lactobacilli have been extensively studied, the catalytic properties of allosteric d-LDHs from Gram-negative bacteria except for Escherichia coli remain unknown. We characterized the catalytic properties of d-LDHs from three Gram-negative bacteria, Fusobacterium nucleatum (FNLDH), Pseudomonas aeruginosa (PALDH), and E. coli (ECLDH) to gain an insight into allosteric mechanism of d-LDHs. While PALDH and ECLDH exhibited narrow substrate specificities toward pyruvate like usual d-LDHs, FNLDH exhibited a broad substrate specificity toward hydrophobic 2-ketoacids such as 2-ketobutyrate and 2-ketovalerate, the former of which gave a 2-fold higher k cat/S0.5 value than pyruvate. Whereas the three enzymes consistently showed hyperbolic shaped pyruvate saturation curves below pH 6.5, FNLDH and ECLDH, and PALDH showed marked positive and negative cooperativity, respectively, in the pyruvate saturation curves above pH 7.5. Oxamate inhibited the catalytic reactions of FNLDH competitively with pyruvate, and the PALDH reaction in a mixed manner at pH 7.0, but markedly enhanced the reactions of the two enzymes at low concentration through canceling of the apparent homotropic cooperativity at pH 8.0, although it constantly inhibited the ECLDH reaction. Fructose 1,6-bisphosphate and certain divalent metal ions such as Mg(2+) also markedly enhanced the reactions of FNLDH and PALDH, but none of them enhanced the reaction of ECLDH. Thus, our study demonstrates that bacterial d-LDHs have highly divergent allosteric and catalytic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230899PMC
http://dx.doi.org/10.1186/s13568-014-0076-1DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
12
catalytic properties
12
allosteric catalytic
8
d-lactate dehydrogenases
8
three gram-negative
8
pyruvate saturation
8
saturation curves
8
reactions fnldh
8
markedly enhanced
8
enhanced reactions
8

Similar Publications

Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity.

Food Environ Virol

January 2025

Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.

The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.

View Article and Find Full Text PDF

Safety and effectiveness of dual therapy for Helicobacter pylori infection and the effect on the glycated hemoglobin level in type 2 diabetes.

Sci Rep

January 2025

Department of Gastroenterology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 68 Gehu Middle Road, Wujing District, Changzhou, 213000, Jiangsu, China.

Patients with diabetes have a high risk of failure of H. pylori eradication therapy. The present study aims to evaluate the efficacy and safety of vonoprazan-amoxicillin (VA) dual therapy for the treatment of H.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!