In this study the concept of biofilm accumulation in the sand column was promoted to assess the changes in hydraulic conductivity and concentration of organic contaminants of the synthetic leachate. Four different combinations of column study were carried out using synthetic leachate as a substrate solution. Mixed and stratified mode of experiments with two different sizes (0.3 mm and 0.6 mm) of sand grains were used for column filling. Two columns were acting as a blank, the remaining two columns amended with mixed microbial cultures which were isolated from leachate. The column was operated with continuous synthetic leachate supply for 45 days. The results indicated that the highest hydraulic conductivity reduction occurred in the mixed sand microbial column with 98.8% when compared to stratified sand microbial column. The analysis of organic contaminants of the effluent leachate was also clearly shown that the mixed sand amended with microbes poses a suitable remedial measure when compared to natural and synthetic liners for controlling the leachate migration in the subsurface environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229613 | PMC |
http://dx.doi.org/10.1186/s40201-014-0126-2 | DOI Listing |
Plant Physiol Biochem
January 2025
Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India. Electronic address:
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Environmental & Food Safety Research group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Road CV-315 Km 10.7, 46113, Moncada, Valencia, Spain.
Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Dust released from widely established plastic sports courts and synthetic turf poses potential environmental and health risks. Herein, we systematically investigate the metal(loid) characteristics, potential sources, and health risks of 162 dust samples from 17 campuses in Beijing, using complementary analytical techniques. Bulk analysis revealed higher levels of Zn, Pb, Cu, Sb, Cd, and Cr than background values, suggesting excessive anthropogenic contamination.
View Article and Find Full Text PDFJ Environ Qual
December 2024
Department of Soil, Water, and Ecosystem Sciences, University of Florida Institute of Food and Agricultural Sciences, Gainesville, Florida, USA.
Residential lawn management often includes fertilizer application to encourage healthy plant growth and support the aesthetic preferences of homeowners and communities. These inputs may negatively impact the environment by increasing nutrient export to aquatic ecosystems via surface runoff or leaching through soil into groundwater. Fertilizer management and nutrient export are of particular concern in karst areas like North-Central Florida, where the underlying karst geology leads to rapid, direct connections between surface and groundwater ecosystems.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain.
The recovery of Co(II), Mn(II), Ni(II), and Cu(II) from black mass e-waste solutions through cellulose nanofibers (CNFs) and nanocrystals (CNCs) was investigated. These materials were synthetized by TEMPO-oxidation followed by high-pressure homogenization, and acid hydrolysis, respectively. The NC characterization included the measurement of consistency, cationic demand, carboxylic content, dissolved amorphous cellulose, and transmittance at λ = 600 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!