Glioblastoma remains among the most devastating cancers with a median survival of less than 15 months and virtually no survival beyond five years. Currently, the treatment of glioma includes surgery, radiation therapy, chemotherapy, and comprehensive treatment. Intrinsic or acquired resistance to TMZ, is one of the greatest obstacles in successful GB treatment, and is thought to be influenced by a variety of mechanisms. The EZH2 gene, which is expressed in various solid tumors, can regulate gene transcription and promote the generation and progression of tumors. Our aim was to investigate the relationship between EZH2 and multidrug-resistance of human glioblastoma cells. In this study, we established TMZ-resistant U251 and U87 clones (U251/TMZ and U87/TMZ cells), which expressed high level of EZH2. Using RNA interference, we demonstrated that the downregulation of Ezh2 expression in U251/TMZ and U87/TMZ cells resulted in apoptosis and a cell cycle arrest in the G1/S phase. Furthermore, the reduced expression of Ezh2 altered the MDR, MRP and BCRP mRNA and protein levels. These findings suggest that EZH2 plays an important part in the development of multidrug resistance and may represent a novel therapeutic target for multidrug-resistant glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230130PMC

Publication Analysis

Top Keywords

u251/tmz u87/tmz
8
u87/tmz cells
8
ezh2
6
inhibition ezh2
4
ezh2 reverses
4
reverses chemotherapeutic
4
chemotherapeutic drug
4
drug tmz
4
tmz chemosensitivity
4
glioblastoma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!