Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4215788PMC
http://dx.doi.org/10.3389/fmicb.2014.00579DOI Listing

Publication Analysis

Top Keywords

fungal communities
12
trait-based approach
8
ecosystem functioning
8
niche processes
8
fungal
8
fungal ecology
8
fungal system
8
environmental gradients
8
communities
7
untangling fungal
4

Similar Publications

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.

View Article and Find Full Text PDF

Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.

View Article and Find Full Text PDF

Posidonia oceanica retains a large amount of carbon within its belowground recalcitrant structure, the 'matte,' which is characterized by low oxygen availability and biodegradation. Fungi may play a pivotal role in carbon sequestration within the matte, even if little/no information is available. To fill this gap, we profiled fungal communities from the upper and lower layers of alive and dead matte, by using an ITS2-5.

View Article and Find Full Text PDF

Fungal influence: The role of the gut mycobiome in women's health.

Cell Host Microbe

January 2025

State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

In this issue of Cell Host & Microbe, Wu et al. identified enriched gut Aspergillus tubingensis in patients with polycystic ovary syndrome (PCOS). In mice, this fungus induced a PCOS-like phenotype by inhibiting interleukin (IL)-22 secretion from ILC3s via the AT-C1-AhR axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!