Esophageal Helicobacter pylori colonization aggravates esophageal injury caused by reflux.

World J Gastroenterol

Yun-Xiang Chu, Wei-Hong Wang, Yun Dai, Gui-Gen Teng, Shu-Jun Wang, Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China.

Published: November 2014

AI Article Synopsis

  • This study aimed to explore how Helicobacter pylori (H. pylori) colonization in the esophagus contributes to damage from acid reflux and the underlying mechanisms.
  • An experimental model was created using male rats, which were divided into four groups, including those with and without H. pylori infection, and their esophageal injuries were assessed both macroscopically and microscopically over 36 weeks.
  • Results indicated that rats with H. pylori colonization experienced more severe esophageal injuries and higher rates of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC), along with increased expression of certain proteins linked to intestinal differentiation and cell proliferation.

Article Abstract

Aim: To investigate esophageal Helicobacter pylori (H. pylori) colonization on esophageal injury caused by reflux and the related mechanisms.

Methods: An esophagitis model, with acid and bile reflux, was surgically produced in male rats. The rats were randomly divided into either: (1) an esophagogastroduodenal anastomosis (EGDA) group; (2) an EGDA with H. pylori infection group; (3) a pseudo-operation with H. pylori infection group; or (4) a pseudo-operation group. All rats were kept for 36 wk. Based on the location of H. pylori colonization, the EGDA rats with H. pylori infection were subdivided into those with concomitant esophageal H. pylori colonization or those with only gastric H. pylori colonization. The esophageal injuries were evaluated grossly and microscopically. The expressions of CDX2 and MUC2 were determined by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. Ki-67 antigen expression was determined by immunohistochemistry. The mRNA levels of cyclin D1, c-Myc, Bax and Bcl-2 were determined by RT-PCR. Cell apoptosis was evaluated using the TdT-mediated dUTP nick-end labeling method.

Results: Esophagitis, Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC) developed in rats that underwent EGDA. When comparing rats with EGDA and concomitant esophageal H. pylori colonization to EGDA-only rats, the severity of injury (87.9 ± 5.2 vs 77.2 ± 8.6, macroscopically, 92.5 ± 8.0 vs 83.8 ± 5.5, microscopically, both P < 0.05) and the incidences of BE (80.0% vs 33.3%, P = 0.055) and EAC (60.0% vs 11.1%, P < 0.05) were increased. These increases were associated with upregulation of CDX2 and MUC2 mRNA (10.1 ± 5.4 vs 3.0 ± 2.9, 8.4 ± 4.6 vs 2.0 ± 3.2, respectively, Ps < 0.01) and protein (8.1 ± 2.3 vs 3.3 ± 3.1, 7.3 ± 4.0 vs 1.8 ± 2.7, respectively, all P < 0.05). The expression of Ki-67 (8.9 ± 0.7 vs 6.0 ± 1.7, P < 0.01) and the presence of apoptotic cells (8.3 ± 1.1 vs 5.3 ± 1.7, P < 0.01) were also increased significantly in rats with EGDA and concomitant esophageal H. pylori colonization compared with rats with EGDA only. The mRNA levels of cyclin D1 (5.8 ± 1.9 vs 3.4 ± 1.3, P < 0.01), c-Myc (6.4 ± 1.7 vs 3.7 ± 1.2, P < 0.01), and Bax (8.6 ± 1.6 vs 5.1 ± 1.3, P < 0.01) were significantly increased, whereas the mRNA level of Bcl-2 (0.6 ± 0.3 vs 0.8 ± 0.3, P < 0.01) was significantly reduced in rats with EGDA and concomitant esophageal H. pylori colonization compared with rats with EGDA only.

Conclusion: Esophageal H. pylori colonization increases esophagitis severity, and facilitates the development of BE and EAC with the augmentation of cell proliferation and apoptosis in esophageal mucosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4229536PMC
http://dx.doi.org/10.3748/wjg.v20.i42.15715DOI Listing

Publication Analysis

Top Keywords

pylori colonization
36
esophageal pylori
20
rats egda
20
concomitant esophageal
16
pylori
13
esophageal
12
pylori infection
12
egda concomitant
12
rats
11
colonization
9

Similar Publications

The dynamic oral-gastric microbial axis connects oral and gastric health: current evidence and disputes.

NPJ Biofilms Microbiomes

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Emerging evidence indicates that oral microbes are closely related to gastric microbes and gastric lesions, including gastric atrophy, intestinal metaplasia and gastric cancer (GC). Helicobacter pylori is a key pathogen involved in GC. However, the increasing prevalence of H.

View Article and Find Full Text PDF

Can a diet rich in Brassicaceae help control infection? A systematic review.

Front Med (Lausanne)

December 2024

Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy.

Introduction: () infection is highly prevalent globally and poses a significant public health challenge due to its link with chronic gastritis, peptic ulcers, and gastric malignancies. 's persistence within the gastric environment, particularly in case of infection with virulent strains, triggers chronic inflammatory responses and mucosal damage. Antibiotic therapy is the primary approach for eradication, but antibiotic resistance and adverse effects hinder treatment efficacy.

View Article and Find Full Text PDF

() is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics.

View Article and Find Full Text PDF

Pathogenicity and virulence of : A paradigm of chronic infection.

Virulence

December 2025

The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.

Infection with is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis.

View Article and Find Full Text PDF

Introduction: Helicobacter pylori exhibit considerable genetic diversity, especially in the cagA gene, which is prone to rearrangement, affecting gastric pathology. This study aims to identify changes in the cagA EPIYA motif patterns and gastric pathology during long-term colonization and to explore how factors such as smoking, alcohol consumption, gender, and age influence these changes.

Methods: Paired formalin-fixed paraffin-embedded (FFPE) gastric biopsies from 100 H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!