In the present paper, using a molecular dynamics simulation, we study a nature of melting of a two-dimensional (2D) system of classical particles interacting through a purely repulsive isotropic core-softened potential which is used for the qualitative description of the anomalous behavior of water and some other liquids. We show that the melting scenario drastically depends on the potential softness and changes with increasing the width of the smooth repulsive shoulder. While at small width of the repulsive shoulder the melting transition exhibits what appears to be weakly first-order behavior, at larger values of the width a reentrant-melting transition occurs upon compression for not too high pressures, and in the low density part of the 2D phase diagram melting is a continuous two-stage transition, with an intermediate hexatic phase in accordance with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario. On the other hand, at high density part of the phase diagram one first-order transition takes place. These results may be useful for the qualitative understanding the behavior of water confined between two hydrophobic plates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4896825 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemical Engineering, Sirjan University of Technology Sirjan Iran https://scholar.google.com/citations?user=N6z-rHsAAAAJ&hl=en.
The potential applicability of the C nanocage and its boron nitride-doped analogs (CBN and CBN) as pyrazinamide (PA) carriers was investigated using density functional theory. Geometry optimization and energy calculations were performed using the B3LYP functional and 6-31G(d) basis set. Besides, dispersion-corrected interaction energies were calculated at CAM (Coulomb attenuated method)-B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
To reduce carbon footprint and human dependence on fossil fuels, the field of bio-based polymers has undergone explosive growth in recent years. Among them, bio-based elastomers have gained tremendous attention for their inherent softness, high strain, and resilience. In this review, the recent progress of representative bio-based elastomers derived from molecular building blocks and biopolymers are recapitulated, with an emphasis on molecular design, synthesis approaches, and mechanical performance.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, 12622, Egypt.
The main goal of the current study is to estimate the in vivo anti-inflammatory/antioxidant ability of four selected pharmaceutical compounds: bisoprolol (Biso), piracetam (Pirc), clopidogrel (Clop), and cinnarizine (Cinna). Indomethacin (Indo) was used as a reference drug to perform a realistic comparison between the four compounds and the Indo in vivo through tracking PI3K/AKT signaling and computational chemistry via density functional theory (DFT) modeling to analyze the electrostatic potential across the molecule and provide insight into the regions for receptor binding of the studied compounds. To achieve the safe dose of these compounds, cytotoxicity was performed against isolated adipose tissue-derived mesenchymal stem cells (ADMSCs) using MTT assay.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Synthesizing nanoparticle superlattices (NPSLs) with different symmetries is of great interest due to their impact on the collective emergent properties and potential applications. While several parameters have been identified as determinants for forming different symmetries of NPSLs, the high core dispersity, softness, and ligand interpenetration were proposed to drive the formation of the C14 Frank-Kasper (C14) structure like MgZn-type. Here, we report that the C14 phase can be formed in highly monodisperse one-size spherical nanoparticles (NPs) by controlling the interplay among their softness and ligand grafting density.
View Article and Find Full Text PDFIperception
December 2024
Crossmodal Research Laboratory, Department of Experimental Psychology, Oxford University, Oxford, UK.
Rounded shapes are associated with softness and warmth, whereas Platonic solids are associated with hardness and coldness. We investigated the temperature-shape association through sensorial/conceptual qualities of geometric ice-like textured shapes. In Experiment 1, participants viewed symmetrical rotating 3D shapes (five Platonic solids-cube, tetrahedron, octahedron, icosahedron, dodecahedron; a star polyhedron and a sphere) and control shapes (naturalistic and angular), rating them in terms of liking, hardness, temperature, wetness, and texture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!