M3D: a kernel-based test for spatially correlated changes in methylation profiles.

Bioinformatics

IANC, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB and Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.

Published: March 2015

Motivation: DNA methylation is an intensely studied epigenetic mark implicated in many biological processes of direct clinical relevance. Although sequencing-based technologies are increasingly allowing high-resolution measurements of DNA methylation, statistical modelling of such data is still challenging. In particular, statistical identification of differentially methylated regions across different conditions poses unresolved challenges in accounting for spatial correlations within the statistical testing procedure.

Results: We propose a non-parametric, kernel-based method, M(3)D, to detect higher order changes in methylation profiles, such as shape, across pre-defined regions. The test statistic explicitly accounts for differences in coverage levels between samples, thus handling in a principled way a major confounder in the analysis of methylation data. Empirical tests on real and simulated datasets show an increased power compared to established methods, as well as considerable robustness with respect to coverage and replication levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380032PMC
http://dx.doi.org/10.1093/bioinformatics/btu749DOI Listing

Publication Analysis

Top Keywords

changes methylation
8
methylation profiles
8
dna methylation
8
methylation
5
m3d kernel-based
4
kernel-based test
4
test spatially
4
spatially correlated
4
correlated changes
4
profiles motivation
4

Similar Publications

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

Objective: We aimed to investigate the effects of Tongluo Zhitong formula on synovial fibroblast proliferation in human knee osteoarthritis (KOA).

Methods: Discarded synovial tissue collected from patients undergoing total knee arthroplasty at our hospital was digested with type I collagenase. Primary culture was performed on three to four generations of fibroblasts, which were treated with high, medium, and low concentrations of Tongluo Zhitong formula.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent form of dementia and represents an increasing global burden, particularly in countries like Indonesia, where the population has begun to age significantly. Current medications, including cholinesterase inhibitors and NMDA receptor antagonists, have modest effects on clinical symptoms in the early to middle stages, but there is no curative treatment available so far despite progress. Activating or repressing epigenetic modifications, including DNA methylation, histone modification and microRNA regulation, appears to play an important role in AD development.

View Article and Find Full Text PDF

Climate change and epigenetics: Unraveling the role of methylation in response to thermal instability in the Antarctic plant Colobanthus quitensis.

Physiol Plant

January 2025

Centro de Ecología Integrativa (CEI), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.

Low temperatures are one of the critical conditions affecting the performance and distribution of plants. Exposure to cooling results in the reprogramming of gene expression, which in turn would be mediated by epigenetic regulation. Antarctica is known as one of the most severe ecosystems, but several climate models predict an increase in average temperature, which may positively impact the development of Antarctic plants; however, under warmer temperatures, plants' vulnerability to damages from low-temperature events increases.

View Article and Find Full Text PDF

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!