Key Points: The synaptic organization of paravertebral sympathetic ganglia enables them to relay activity from the spinal cord to the periphery and thereby control autonomic functions, including blood pressure and body temperature. The present experiments were done to reconcile conflicting observations in tissue culture, intact isolated ganglia and living animals. By recording intracellularly from dissociated neurons and intact ganglia, we found that when electrode damage makes cells leaky it could profoundly distort cellular excitability and the integration of synaptic potentials. The experiments relied on the dynamic clamp method, which allows the creation of virtual ion channels by injecting current into a cell based upon a mathematical model and using rapid feedback between the model and cell. The results support the hypothesis that sympathetic ganglia can produce a 2.4-fold amplification of presynaptic activity. This could aid understanding of the neural hyperactivity that is believed to drive high blood pressure in some patients.

Abstract: The excitability of rat sympathetic neurons and integration of nicotinic EPSPs were compared in primary cell culture and in the acutely isolated intact superior cervical ganglion using whole cell patch electrode recordings. When repetitive firing was classified by Hodgkin's criteria in cultured cells, 18% displayed tonic class 1 excitability, 36% displayed adapting class 2 excitability and 46% displayed phasic class 3 excitability. In the intact ganglion, 71% of cells were class 1 and 29% were class 2. This diverges from microelectrode reports that nearly 100% of superior cervical ganglion neurons show phasic class 3 firing. The hypothesis that the disparity between patch and microelectrode data arises from a shunt conductance was tested using the dynamic clamp in cell culture. Non-depolarizing shunts of 3-10 nS converted cells from classes 1 and 2 to class 3 dynamics with current-voltage relations that replicated microelectrode data. Primary and secondary EPSPs recorded from the intact superior cervical ganglion were modelled as virtual synapses in cell culture using the dynamic clamp. Stimulating sympathetic neurons with virtual synaptic activity, designed to replicate in vivo recordings of EPSPs in muscle vasoconstrictor neurons, produced a 2.4-fold amplification of presynaptic activity. This gain in postsynaptic output did not differ between neurons displaying the three classes of excitability. Mimicry of microelectrode damage by virtual leak channels reduced and eventually obliterated synaptic gain by inhibiting summation of subthreshold EPSPs. These results provide a framework for interpreting sympathetic activity recorded from intact animals and support the hypothesis that paravertebral ganglia function as activity-dependent amplifiers of spinal output from preganglionic circuitry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398523PMC
http://dx.doi.org/10.1113/jphysiol.2014.284125DOI Listing

Publication Analysis

Top Keywords

sympathetic neurons
12
dynamic clamp
12
cell culture
12
superior cervical
12
cervical ganglion
12
class excitability
12
virtual leak
8
leak channels
8
rat sympathetic
8
sympathetic ganglia
8

Similar Publications

The purpose of this review is to compile and discuss available evidence in humans on the efficacy of YHM supplementation on performance in different exercise modalities. Yohimbine (YHM) is a naturally occurring alkaloid that induces increases in sympathetic nervous system (SNS) activation effectively initiating "fight or flight" responses. In supplement form, YHM is commonly sold as an isolated product or combined into multi-ingredient exercise supplements and is widely consumed in fitness settings despite the lack of empirical support until recently.

View Article and Find Full Text PDF

Intranasal administration of angiotensin receptor shRNA to brain lowers blood pressure in spontaneously hypertensive rats.

Biomed Pharmacother

December 2024

Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States. Electronic address:

Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness.

View Article and Find Full Text PDF

Targeted Ganglionated Plexi Ablation With Nanoformulated Calcium Suppresses Postoperative AF Via Vagosympatholytic and Anti-Inflammatory Effects.

JACC Clin Electrophysiol

November 2024

Electrophysiology Section, Division of Cardiology, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA; Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA. Electronic address:

Background: The mechanisms underlying postoperative atrial fibrillation (POAF) remain unclear.

Objectives: The aim of this study was to test the hypothesis that targeted chemical ganglionated plexi (GP) modulation of all major left atrial-pulmonary vein GP using novel nanoformulated calcium chloride (nCaCl) can reverse postoperative neuroelectrical remodeling by suppressing vagosympathetic nerve activity and the localized inflammatory process, both critical substrates of POAF.

Methods: In a novel canine model of POAF with serial thoracopericardiotomies, sympathetic nerve activity (SNA), vagal nerve activity (VNA) and GP nerve activity (GPNA) were recorded; spontaneous and in vivo AF vulnerability were assessed; and atrial and circulating inflammatory markers and norepinephrine (NE) were measured to determine the neuroelectrical remodeling that promotes POAF and its subsequent modulation with nCaCl GP treatment (n = 6) vs saline sham controls (n = 6).

View Article and Find Full Text PDF

A spinal neural circuit for electroacupuncture that regulates gastric functional disorders.

J Integr Med

December 2024

College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Scicence Center, Hefei 230051, Anhui Province, China. Electronic address:

Objective: Acupuncture therapies are known for their effectiveness in treating a variety of gastric diseases, although the mechanisms underlying these effects are not fully understood. This study tested the effectiveness of electroacupuncture (EA) at acupoints Zhongwan (RN12) and Weishu (BL21) for managing gastric motility disorder (GMD) and investigated the underlying mechanisms involved.

Methods: A GMD model was used to evaluate the impact of EA on various aspects of gastric function including the amplitude of gastric motility, electrogastrogram, food intake, and the rate of gastric emptying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!