Background: The clinical course of Staphylococcus aureus bloodstream infection is unpredictable and bacterial virulence, host immune response and patient characteristics are among the factors that contribute to the clinical course of infection. To investigate the relationship between cytokine response and clinical outcome, circulating cytokine levels were investigated in response to S. aureus bloodstream infection in patients with different clinical courses of infection.
Methods: A prospective study was carried out in 61 patients with S. aureus bloodstream infection and circulating levels of IL-6, GRO-γ, RANTES and leptin were assessed over the course of the infection. Levels were compared in patients with complicated courses of infection (e.g. infective endocarditis) versus uncomplicated courses of S. aureus bloodstream infection and methicillin-resistant S. aureus Vs methicillin-susceptible S. aureus infection.
Results: Significantly lower leptin levels (p < 0.05) and significantly higher IL-6 levels (p < 0.05) were detected at laboratory diagnosis in patients with complicated compared to uncomplicated S. aureus bloodstream infection. Significantly higher levels of GRO-γ were associated with MRSA infection compared to MSSA infection.
Conclusions: IL-6 may be an early inflammatory marker of complicated S. aureus bloodstream infection. Leptin may be protective against the development of a complicated S. aureus bloodstream infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237739 | PMC |
http://dx.doi.org/10.1186/s12879-014-0580-6 | DOI Listing |
Clin Microbiol Rev
January 2025
Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
SUMMARY is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels.
View Article and Find Full Text PDFAPMIS
January 2025
Department of Laboratory Medicine, Clinical Microbiology Örebro University Hospital and Faculty of Medicine and Health at Örebro University, Örebro, Sweden.
Shotgun metagenomics offers a broad detection of pathogens for rapid blood stream infection of pathogens but struggles with often low numbers of pathogens combined with high levels of human background DNA in clinical samples. This study aimed to develop a shotgun metagenomics protocol using blood spiked with various bacteria and to assess bacterial DNA extraction efficiency with human DNA depletion. The Blood Pathogen Kit (Molzym) was used to extract DNA from EDTA-whole blood (WB) and plasma samples, using contrived blood specimens spiked with bacteria for shotgun metagenomics diagnostics via Oxford Nanopore sequencing and PCR-based library preparation.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
Objectives: This study aimed to investigate the microbiological and clinical heterogeneity of community-onset bloodstream infections (BSIs) and identify features to support targeted empirical antibiotic therapy in the Emergency Department (ED).
Methods: Clinical and microbiological data from 992 BSI cases (1,135 isolates) diagnosed within 24 hours of ED admission at IRCCS Humanitas Research Hospital, Milan, Italy (January 2015-June 2022), were analyzed. Drug resistance was interpreted using EUCAST-2023.
Objective: To describe demographics, causative pathogens, hospitalization, mortality, and antimicrobial resistance of bacterial bloodstream infections (BSIs) among beneficiaries in the global U.S. Military Health System (MHS), a single-provider healthcare system with 10-year longitudinal follow-up.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Mechanical Engineering, Ajou University, South Korea. Electronic address:
Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!