CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity.

Circ Res

From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.).

Published: January 2015

Rationale: CD4(+) natural killer T (NKT) cells augment atherosclerosis in apolipoprotein E-deficient (ApoE)(-/-) mice but their mechanisms of action are unknown.

Objectives: We investigated the roles of bystander T, B, and NK cells; NKT cell-derived interferon-γ, interleukin (IL)-4, and IL-21 cytokines; and NKT cell-derived perforin and granzyme B cytotoxins in promoting CD4(+) NKT cell atherogenicity.

Methods And Results: Transfer of CD4(+) NKT cells into T- and B-cell-deficient ApoE(-/-)Rag2(-/-) mice augmented aortic root atherosclerosis by ≈75% that was ≈30% of lesions in ApoE(-/-) mice; macrophage accumulation similarly increased. Transferred NKT cells were identified in the liver and atherosclerotic lesions of recipient mice. Transfer of CD4(+) NKT cells into T-, B-cell-deficient, and NK cell-deficient ApoE(-/-)Rag2(-/-)γC(-/-) mice also augmented atherosclerosis. These data indicate that CD4(+) NKT cells can exert proatherogenic effects independent of other lymphocytes. To investigate the role of NKT cell-derived interferon-γ, IL-4, and IL-21 cytokines and perforin and granzyme B cytotoxins, CD4(+) NKT cells from mice deficient in these molecules were transferred into NKT cell-deficient ApoE(-/-)Jα18(-/-) mice. CD4(+) NKT cells deficient in IL-4, interferon-γ, or IL-21 augmented atherosclerosis in ApoE(-/-)Jα18(-/-) mice by ≈95%, ≈80%, and ≈70%, respectively. Transfer of CD4(+) NKT cells deficient in perforin or granzyme B failed to augment atherosclerosis. Apoptotic cells, necrotic cores, and proinflammatory VCAM-1 (vascular cell adhesion molecule) and MCP-1 (monocyte chemotactic protein) were reduced in mice receiving perforin-deficient NKT cells. CD4(+) NKT cells are twice as potent as CD4(+) T cells in promoting atherosclerosis.

Conclusions: CD4(+) NKT cells potently promote atherosclerosis by perforin and granzyme B-dependent apoptosis that increases postapoptotic necrosis and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.116.304734DOI Listing

Publication Analysis

Top Keywords

nkt cells
44
cd4+ nkt
36
nkt
16
perforin granzyme
16
cells
15
cd4+
12
nkt cell-derived
12
transfer cd4+
12
mice
9
cd4+ natural
8

Similar Publications

Background: Hemophagocytic lymphohistiocytosis (HLH) is an immunologic syndrome characterized by excessive inflammation and tissue injury due to uncontrolled activation of the phagocytic system. The underlying mechanism is a lack of downregulation of activated macrophages and lymphocytes by natural killer and T cells. Unfortunately, the diagnosis is often delayed or missed due to the rarity of the disease, decreased awareness, and clinical picture variability.

View Article and Find Full Text PDF

Background: The Healthy Eating Index (HEI)-2015 measures diet quality and is associated with a lower risk of death from chronic disease. Dietary components may affect health via multiple mechanisms, including by decreasing inflammation and affecting immune activation.

Objective: We hypothesized that the overall HEI-2015 score, or individual component scores, would be associated with altered inflammation and immune activation in healthy adults.

View Article and Find Full Text PDF

Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.

View Article and Find Full Text PDF

Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.

View Article and Find Full Text PDF

Background: Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!