Antioxidant status and Na(+), K (+)-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach.

Environ Sci Pollut Res Int

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210046, People's Republic of China.

Published: March 2015

AI Article Synopsis

Article Abstract

Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely applied in numerous chemical technologies. Its increasing production and utilization will inevitably lead to the problem of waste disposal, with incineration as an important method. However, toxicity data of its combustion products on aquatic organisms have been seldom reported. The present study was therefore conducted to investigate the antioxidant response and Na(+), K(+)-ATPase activity in liver of Carassius auratus exposed to different combustion products of N117 for 5, 15, and 30 days. The concentrations of fluorine ion (F(-)) in the aquaria among the exposure durations were analyzed using the ion chromatography system. The results showed that these treatments have the capability to induce oxidative stress and suppress Na(+), K(+)-ATPase activity, as indicated by some significant alterations on these measured toxicity end-points in fish liver. According to the integrated biomarker response (IBR) index, the toxicity intensity of these experimental treatments was tentatively ranked. Taken together, these observations provided some preliminary data on the potential toxicity of the combustion products of N117 on aquatic organisms and could fill the information gaps in the toxicity database of the current-use PEM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3826-3DOI Listing

Publication Analysis

Top Keywords

combustion products
16
carassius auratus
8
auratus exposed
8
exposed combustion
8
nafion 117
8
117 membrane
8
integrated biomarker
8
aquatic organisms
8
na+ k+-atpase
8
k+-atpase activity
8

Similar Publications

Cocombustion with biomass tar is a potential method for NO reduction during fossil fuel combustion. In this work, the molecular dynamic method based on the reactive force field was used to study the NO reduction by phenol, which is a typical tar model compound. Results indicate that phenol undergoes significant decomposition at 3000 K, resulting in the formation of small molecular fragments accompanied by the generation of large molecular, network-structured soot particles.

View Article and Find Full Text PDF

Nitrocellulose (NC)-based propellants have played a pivotal role in the development of energetic materials for both military and civilian applications. This review offers a comprehensive exploration of NC-based propellants, tracing their evolution from their historical origins as smokeless gunpowder to modern advancements. It discusses the chemical composition and classifications of NC propellants, along with continuous efforts to refine smokeless powder formulations through studies on smoke formation, residues, and additives.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!