The spectral (e.p.r. and absorbance) properties of the NO and deoxy derivatives of ferrous horseradish peroxidase (HRP; EC 1.11.1.7) and baker's-yeast cytochrome c peroxidase (CCP; EC 1.11.1.5) were investigated between pH 7 and pH 2; over the same pH range the kinetics for CO binding were also determined. At neutral pH the e.p.r. and absorption spectra of the NO and deoxy derivatives of HRP and CCP are typical of systems in which the haem iron is in the hexaco-ordinated state and the pentaco-ordinated state respectively. By lowering pH, the e.p.r. and absorption spectra of HRP and CCP undergo reversible transitions, with pKa values of 4.1 for the NO derivatives and less than or equal to 3 for the deoxy derivatives of the ferrous forms. By analogy with O2-carrying proteins and haem model compounds, the pH-dependent spectral changes of HRP and CCP were interpreted as indicative of the protonation of the N(epsilon) atom of the proximal histidine residue and of the cleavage of the Fe-N(epsilon) bond. However, the slow second-order rate constant (0.003 microM-1.s-1) for CO binding to deoxy ferrous HRP and CCP does not increase substantially even at pH 2.6, suggesting that changes in the Fe-haem plane geometry, presumably associated with the cleavage of the Fe-N(epsilon) bond, do not affect appreciably the observed ligand association rate constant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1138385 | PMC |
http://dx.doi.org/10.1042/bj2580473 | DOI Listing |
Cells
December 2024
Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Objective: Mycoplasmas are structurally simple pathogenic microorganisms that can cause a wide range of diseases in humans and animals and conventional antibiotic therapies of fluoroquinolones and tetracyclines are toxic to young children and young animals and macrolide resistance is increasing. In this context, new anti-mycoplasma antimicrobial agents need to be developed. 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxypleuromutilin (compound 16C) is a novel acetamine phenyl pleuromutilin derivative.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, P.R. China.
Purpose: To investigate the predictive value of 2-[18F]-fluoro-2-deoxy-D-glucose ([F]FDG) PET/CT for evaluating primary tumor (PT) and lymph node (LN) responses after neoadjuvant programmed death-ligand 1 (PD-L1) blockade monotherapy in patients with locally advanced esophageal squamous cell carcinoma (LA-ESCC).
Methods: In the single-arm phase 1b NATION-1907 trial (NCT04215471), 23 patients with LA-ESCC received two cycles of neoadjuvant PD-L1 blockade Adebrelimab followed by surgery. Among these, 18 patients underwent [F]FDG PET/CT scans both before immunotherapy and prior to surgery.
Stem Cell Res Ther
December 2024
Department of Pediatrics, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan, 250012, Shandong, P.R. China.
Background: Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.
Methods: We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!