The discovery of disease-specific biomarkers in oral fluids has revealed a new dimension in molecular diagnostics. Recent studies have reported the mechanistic involvement of tumor cells derived mediators, such as exosomes, in the development of saliva-based mRNA biomarkers. To further our understanding of the origins of disease-induced salivary biomarkers, we here evaluated the hypothesis that tumor-shed secretory lipidic vesicles called exosome-like microvesicles (ELMs) that serve as protective carriers of tissue-specific information, mRNAs, and proteins, throughout the vasculature and bodily fluids. RNA content was analyzed in cell free-saliva and ELM-enriched fractions of saliva. Our data confirmed that the majority of extracellular RNAs (exRNAs) in saliva were encapsulated within ELMs. Nude mice implanted with human lung cancer H460 cells expressing hCD63-GFP were used to follow the circulation of tumor cell specific protein and mRNA in the form of ELMs in vivo. We were able to identify human GAPDH mRNA in ELMs of blood and saliva of tumor bearing mice using nested RT-qPCR. ELMs positive for hCD63-GFP were detected in the saliva and blood of tumor bearing mice as well as using electric field-induced release and measurement (EFIRM). Altogether, our results demonstrate that ELMs carry tumor cell-specific mRNA and protein from blood to saliva in a xenografted mouse model of human lung cancer. These results therefore strengthen the link between distal tumor progression and the biomarker discovery of saliva through the ELMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232306PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110641PLOS

Publication Analysis

Top Keywords

blood saliva
12
tumor cell-specific
8
cell-specific mrna
8
mrna protein
8
exosome-like microvesicles
8
human lung
8
lung cancer
8
tumor bearing
8
bearing mice
8
saliva
7

Similar Publications

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

Clinical and Epidemiologic Review of Capnocytophaga Spp. Infections Identified at a Public Health Reference Laboratory-California, 2005-2021.

Zoonoses Public Health

January 2025

Infectious Diseases Branch, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Sacramento, California, USA.

Introduction: Capnocytophaga is a genus of bacteria that are commensal to the oral microbiome of humans and some animals. Some Capnocytophaga species are found in the human oral cavity and rarely cause disease in people; the species found in animals are zoönotic and can be transmitted to people via saliva. This study describes the clinical and epidemiologic features of patients from whom Capnocytophaga spp.

View Article and Find Full Text PDF

Conductive and flexible gold-coated polylactic acid nanofiber-based electrochemical aptasensor for monitoring cortisol level in sweat and saliva.

Bioelectrochemistry

January 2025

Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan. Electronic address:

Conductive nanofibers can exhibit excellent mechanical properties such as flexibility, elasticity, porosity, large surface area-to-volume ratio, etc making them suitable for a wide range of applications including biosensor development. Their large surface area provides more active sites for immobilization of large amount of bioreceptors enabling more interaction sites with the target analytes, enhancing sensitivity and detection capabilities. However, engineering conductive nanofibers with such excellent properties is challenging limiting their effective deployment for intended applications.

View Article and Find Full Text PDF

Rapid identification of pathogenic bacteria from clinical positive blood cultures virus-like magnetic bead enrichment and MALDI-TOF MS profiling.

Analyst

January 2025

Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.

Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.

View Article and Find Full Text PDF

Introduction: Post-Traumatic Stress Disorder (PTSD) is associated with exposure to traumatic events, especially in the military setting. However, patients who experience stroke may develop anxiety about their stroke event and may re-experience transient neurological symptoms as a result. A significant portion develop the persistent and disabling symptoms of PTSD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!