Gold nanospheres have been manipulated by atomic force microscopy on a rippled glass surface produced by ion beam sputtering and coated with an ultrathin (10 nm thick) graphitic layer. This substrate is characterized by irregular wavy grooves running parallel to a preferential direction. Measurements in ambient conditions show that the motion of the nanoparticles is confined to single grooves ('channels'), along which the particles move till they are trapped by local bottlenecks. At this point, the particles cross the ripple pattern in a series of consecutive jumps and continue their longitudinal motion along a different channel. Moreover, due to the asymmetric shape of the ripple profiles, the jumps occur in the direction of minimum slope, resembling a ratchet mechanism. Our results are discussed, extending a collisional model, which was recently developed for the manipulation of nanospheres on flat surfaces, to the specific geometry of this problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/25/48/485302 | DOI Listing |
Nanomaterials (Basel)
December 2024
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302. India. Electronic address:
Protein molecules interact with nanoparticles to form a protein layer on the surface called the protein corona. Corona formation can be affected by the temperature and shape of the nanoparticles thereby impacting the fate of the nanoparticles inside physiological systems. We have investigated the human serum albumin (HSA) corona formation and its interactions with gold nanospheres and nanorods at different temperatures (18-42 °C).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.
Hydrogel nanocomposites that respond to external stimuli and possess switchable electrical properties are considered as emerging materials with potential uses in electrical, electrochemical, and biological devices. This work reports the synthesis and characterization of thermo-responsive and electroconductive hydrogel nanocomposites based on poly(-isopropylacrylamide) (PNiPAAm) and gold nanoparticles (nanospheres-AuNPs and nanorods-AuNRs) using two different synthetic techniques. Method I involved γ-irradiation-induced crosslinking of a polymer matrix (hydrogel), followed by radiolytic formation of gold nanoparticles, while Method II included the chemical synthesis of nanoparticles, followed by radiolytic formation of a polymer matrix around the gold nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!