Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of seawater pH using boron isotopes should be uncompromised by short-term bleaching events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232377 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112011 | PLOS |
Front Oncol
December 2024
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Purpose: This study aimed to describe the trends, current hotspots, and future directions in boron neutron capture therapy (BNCT) through a bibliometric analysis.
Methods: Articles related to BNCT published before 2023-12-31 were retrieved from the Web of Science Core Collection database. VOSviewer, R, and CiteSpace were used for bibliometric analysis and visualization.
J Org Chem
December 2024
Department of Organic Chemistry and Biochemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia.
BODIPY photocages (photocleavable protective groups) have stirred interest because they can release biologically active cargo upon visible light excitation. We conducted combined theoretical and experimental investigations on selected BODIPY photocages to elucidate the mechanism of the competing photocleavage at the boron and -position. Based on the computations, the former reaction involves elongation of the B-C bond, yielding a tight borenium cation and methyl anion.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Département de physique et Institut Courtois, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, Quebec, H3C 3J7, CANADA.
We introduce a machine learning prediction workflow to study the impact of defects on the Raman response of 2D materials. By combining the use of machine-learned interatomic potentials, the Raman-active $\Gamma$-weighted density of states method and splitting configurations in independant patches, we are able to reach simulation sizes in the tens of thousands of atoms, with diagonalization now being the main bottleneck of the simulation. We apply the method to two systems, isotopic graphene and defective hexagonal boron nitride, and compare our predicted Raman response to experimental results, with good agreement.
View Article and Find Full Text PDFLangmuir
December 2024
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
The development of effective catalysts for hydrogen (H) generation from chemical hydrides is essential for advancing hydrogen-based energy technologies. Herein, we synthesized a Pd-dispersed CPO-27 catalyst exhibiting exceptional performance for hydrolysis of two boron-based chemical hydrides, i.e.
View Article and Find Full Text PDFSci Total Environ
December 2024
MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!