Fibroblasts and myofibroblasts in wound healing.

Clin Cosmet Investig Dermatol

Department of Physiology and EA 6309, FR 3503, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France.

Published: November 2014

(Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226391PMC
http://dx.doi.org/10.2147/CCID.S50046DOI Listing

Publication Analysis

Top Keywords

myofibroblasts microenvironment
16
tissue repair
8
ecm myofibroblasts
8
dialogue myofibroblasts
8
skin alterations
8
myofibroblasts
7
fibroblasts myofibroblasts
4
myofibroblasts wound
4
wound healing
4
healing myofibroblasts
4

Similar Publications

Single-cell transcriptomics reveals intratumor heterogeneity and the potential roles of cancer stem cells and myCAFs in colorectal cancer liver metastasis and recurrence.

Cancer Lett

January 2025

Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, Shandong, China. Electronic address:

Metastasis and recurrence are the primary obstacles to long-term survival in colorectal cancer (CRC) patients. In this study, we employed single-cell RNA sequencing (scRNA-seq) to comprehensively delineate the transcriptomic landscape of primary and liver metastatic CRCs, and revealed novel cellular crosstalk between cancer cell subpopulation and myofibroblastic CAFs (myCAFs) at single-cell resolution. We identified a cancer cell subpopulation termed stem/transient amplifying-like (stem/TA-like) cells, which expressed genes associated with stem cell-like characteristics and metastatic potential.

View Article and Find Full Text PDF

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

Metabolic Atlas of Human Eyelid Infiltrative Basal Cell Carcinoma.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Eyelid infiltrative basal cell carcinoma (iBCC) is the most common malignant tumor affecting the ocular adnexa, but studies on metabolic changes within its microenvironment and heterogeneity at the tumor invasive area are limited. This study aims to analyze metabolic differences among iBCC cell types using single-cell and spatial metabolomics analysis and to examine metabolic environment at the tumor invasive area.

Methods: Single-cell transcriptomic data of human basal cell carcinoma (BCC) were clustered and visualized using Uniform Manifold Approximation and Projection.

View Article and Find Full Text PDF

FGF and TGF-β Growth Factor Isoform Modulation of Human Gingival and Periodontal Ligament Fibroblast Wound Healing Phenotype.

Matrix Biol

January 2025

Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada. Electronic address:

Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated.

View Article and Find Full Text PDF

Biomimetic Topological Micropattern Arrays Regulate the Heterogeneity of Cellular Fates in Lung Fibroblasts between Fibrosis and Invasion.

ACS Nano

January 2025

Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Article Synopsis
  • Idiopathic pulmonary fibrosis (IPF) involves persistent lung tissue injury and abnormal healing, with key roles played by myofibroblasts transitioning from fibroblasts and depositing extracellular matrix (ECM).
  • Research using engineered ECM micropatterns revealed that isotropic fibroblasts exhibited invasive characteristics and high expression of specific markers, while anisotropic fibroblasts adopted a more normal remodeling phenotype.
  • The study highlights how cellular topology affects fibroblast behavior and interactions with the ECM, which could contribute to worsening fibrosis and potentially create an environment that promotes cancer development.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!