A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea. | LitMetric

Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3727-5DOI Listing

Publication Analysis

Top Keywords

water quality
32
quality variables
20
catchment attributes
16
water
8
river water
8
quality
8
caspian sea
8
multiple linear
8
land
6
variables
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!