A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Medicaid managed care: how to target efforts to reduce costs. | LitMetric

AI Article Synopsis

  • The analysis focused on identifying Medicaid Managed Care beneficiaries who might incur high healthcare costs using the Charlson comorbidity index as a measure of total health burden.
  • Findings revealed that comorbidity was a strong predictor of total costs, especially among adults, while serious mental illness and pregnancy also contributed significantly to cost variance.
  • The study concluded that utilizing comorbidity data can effectively pinpoint beneficiaries likely to incur high healthcare expenses, improving cost control strategies.

Article Abstract

Background: To be successful, cost control efforts must target Medicaid Managed Care (MMC) beneficiaries likely to incur high costs. The critical question is how to identify potential high cost beneficiaries with simple, reproducible, transparent, auditable criteria. Our objective in this analysis was to evaluate whether the total burden of comorbidity, assessed by the Charlson comorbidity index, could identify MMC beneficiaries who incurred high health care costs.

Methods: The MetroPlus MMC claims database was use to analyze six months of claims data from 07/07-12/07; the analysis focused on the total amount paid. Age, gender, Charlson comorbidity score, serious mental illness and pregnancy were analyzed as predictors of total costs.

Results: We evaluated the cost profile of 4,614 beneficiaries enrolled at MetroPlus, an MMC plan. As hypothesized, the comorbidity index was a key correlate of total costs (p < .01). Yearly costs were more related to the total burden of comorbidity than any specific comorbid disease. For adults, in addition to comorbidity (p < .01) both serious mental illness (p < .01) and pregnancy (p < .01) were also related to total costs, while age, drug addiction and gender were not. The model with age, gender, comorbidity, serious mental illness, pregnancy and addiction explained 20% of the variance in total costs. In children, comorbidity (p < .01), serious mental illness (p < .01), addiction (p < .03) and pregnancy (p < .01) were associated with log cost; the model with those variables explained 6% of the variance in costs.

Conclusions: Comorbidity can be used to identify MMC beneficiaries most likely to have high costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289361PMC
http://dx.doi.org/10.1186/1472-6963-14-461DOI Listing

Publication Analysis

Top Keywords

serious mental
16
mental illness
16
mmc beneficiaries
12
illness pregnancy
12
total costs
12
comorbidity serious
12
comorbidity
9
medicaid managed
8
managed care
8
high costs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!