First-principles analysis of defect-mediated Li adsorption on graphene.

ACS Appl Mater Interfaces

School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Published: December 2014

To evaluate the possible utility of single layer graphene for applications in Li ion batteries, an extensive series of periodic density functional theory (DFT) calculations are performed on graphene sheets with both point and extended defects for a wide range of lithium coverages. Consistent with recent reports, it is found that Li adsorption on defect-free single layer graphene is not thermodynamically favorable compared to bulk metallic Li. However, graphene surfaces activated by defects are generally found to bind Li more strongly, and the interaction strength is sensitive to both the nature of the defects and their densities. Double vacancy defects are found to have much stronger interactions with Li as compared to Stone-Wales defects, and increasing defect density also enhances the interaction of the Stone-Wales defects with Li. Li interaction with one-dimensional extended defects on graphene is additionally found to be strong and leads to increased Li adsorption. A rigorous thermodynamic analysis of these data establishes the theoretical Li storage capacities of the defected graphene structures. In some cases, these capacities are found to approach, although not exceed, those of graphite. The results provide new insights into the fundamental physics of adsorbate interactions with graphene defects and suggest that careful defect engineering of graphene might, ultimately, provide anode electrodes of suitable capacity for lithium ion battery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am506008wDOI Listing

Publication Analysis

Top Keywords

graphene
9
single layer
8
layer graphene
8
defects
8
extended defects
8
stone-wales defects
8
first-principles analysis
4
analysis defect-mediated
4
defect-mediated adsorption
4
adsorption graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!