Pharmaceuticals are pseudopersistent aquatic pollutants with unknown effects at environmentally relevant concentrations. Atlantic salmon (Salmo salar) were exposed to Acetaminophen: 54.77 ± 34.67; Atenolol: 11.08 ± 7.98, and Carbamazepine: 7.85 ± 0.13 μg·L(-1) for 5 days. After Acetaminophen treatment, 19 proteins were differently expressed, of which 11 were significant with respect to the control group (eight up-regulated and three down-regulated). After Atenolol treatment, seven differently expressed proteins were obtained in comparison with the control, of which six could be identified (four up-regulated and two down-regulated). Carbamazepine exposure resulted in 15 differently expressed proteins compared with the control, with 10 of them identified (seven up-regulated and three down-regulated). Out of these, three features were common between Acetaminophen and Carbamazepine and one between Carbamazepine and Atenolol. One feature was common across all treatments. Principal component analysis and heat map clustering showed a clear grouping of the variability caused by the applied treatments. The obtained data suggest (1) that exposure to environmentally relevant concentrations of the pharmaceuticals alters the hepatic protein expression profile of the Atlantic salmon; and (2) the existence of treatment specific processes that may be useful for biomarker development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4350032PMC
http://dx.doi.org/10.1074/mcp.M114.045120DOI Listing

Publication Analysis

Top Keywords

atlantic salmon
12
differently expressed
12
salmon salmo
8
salmo salar
8
environmentally relevant
8
relevant concentrations
8
up-regulated three
8
three down-regulated
8
expressed proteins
8
control identified
8

Similar Publications

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.

View Article and Find Full Text PDF

Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!